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STAT 437 - Assignment 2
Due: Friday, February 11 on Crowdmark
Resubmit: Friday, March 4 on Crowdmark

This assignment covers the materials contained in Lecture 010 through to Lecture 020.
Reminder that you are permitted to discuss to these problems with classmates, but every
student must submit their own solutions which are their own work (including any code,
figures, etc.). Please indicate any students that you discussed solutions with on
your submission. Please ensure that your submissions on Crowdmark are legible, and
separated based on the problems included at the submission link. Submissions can be

handwritten or typeset.

Part 1: True or False (20 Marks)

For each of the following problems indicate whether the statement is true or false, and give
a short justification for your answer. Correct answers without justification will receive only
partial credit.

Problem 1. Suppose that a linear mixed effects model is specified for a continuous outcome,
Yij, such that

Yij = β0 + β1tij + β2Ai + b0,i + b1,iAi + ϵij.

Here, tij represents the time, treated as a continuous variable and Ai ∈ {0, 1} is a binary
treatment indicator. Assume that Gi = σ2I. True or false: The within-person correla-
tion structure can be written as AiR(ρ1)+(1−Ai)R(ρ2), where R(ρ) is a correlation
matrix which assumes compound symmetry.

Solution 1: [1] True. [1] Consider that cov(Yij, Yiℓ) = var(b0,i) + Ai var(b1,i) +
2Ai cov(b0,i, b1,i) + I(j = ℓ)σ2. As a result, the correlation will be given by

σ2
0 + Aiσ

2
1 + 2Aiσ01

σ2
0 + Aiσ2

1 + 2Aiσ01 + σ2
= Ai

σ2
0 + σ2

1 + 2σ01

σ2
0 + σ2

1 + 2σ01 + σ2
+ (1− Ai)

σ2
0

σ2
0 + σ2

= Aiρ1 + (1− Ai)ρ2.

Problem 2. Suppose that we have observed data {Wi, Zi} for an independent sample,
i = 1, . . . , n where Wi is a binary indicator and Zi is a discrete random variable, with values
{−1, 0, 1}. Consider the M-estimator given by

U(θ) =
n∑

i=1

I(Zi = −1)(Wi − θ1)
I(Zi = 0)(Wi − θ2)
1− θ1 − θ2 − θ3

 .

Denote θ̂ = (θ̂1, θ̂2, θ̂3) as the solution to U(θ̂) = 0. True or false: θ̂3 is consistent for
P (Wi = 1|Zi = 1).

Solution 2: [1] False. [1] Applying iterated conditioning on Zi, we can show that the
first component is unbiased when θ1 = P (Wi = 1|Zi = −1), the second component when
θ2 = P (Wi = 1|Zi = 0), which means the third component will be unbiased when θ3 =
1− θ1 − θ2 = 1− P (Wi = 1|Zi = −1)− P (Wi = 1|Zi = 0). This is not (in general) going to
be P (Wi = 1|Zi = 1).
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Problem 3. You have a friend who is not a particularly strong calculus student. In at-
tempting to implement GEE for a marginal model, they incorrectly find that

Di =
∂

∂β
g−1(Xiβ) = 1,

(the correct sized matrix of all 1’s). They also make the incorrect assumption of working
independence (Vi = σ2I). Despite this, they have correctly specified the mean model and
link function. True or false: the estimators produced using the GEE under their
specification will be consistent for the true β.

Solution 3: [1] True. [1] Under the assumption that E[Yi|Xi] = g−1(Xiβ) for the specified
g and Xiβ, GEE will produce consistent estimation. This can be argued either by appeal-
ing to M-estimation theory (e.g., the estimating equations remain unbiased in spite of the
misspecification) or to the GEE theory which states consistency is attained through correct
mean specification.

Problem 4. Consider a hypothetical dataset that contains information on the following
variables:

• Smoking Status: A binary indicator, Yij, measured for each individual i at each time
point j.

• Age: A continuous variate denoting time, tij, recorded for each individual i at each
time point j.

• Baseline Income: A continuous variate, Inci, recorded for each individual i at the
baseline.

• Employment Status: A binary indicator, Eij, measured for each individual i at each
time point j.

Suppose a marginal model is fit to this data, which specifies a logistic link function, binomial
variance pattern, and a linear predictor given by

logit(E[Yij|Xij]) = β0 + β1tij + β2Inci + β3Eij.

True or false: This is a valid marginal model which can be fit using GEE.

Solution 4: [1] False. [1] The specification of the model would be fine except for the inclu-
sions of Eij. Employment status is a time-varying covariate, and one which varies in a way
that is stochastic. As a result, it cannot be included in marginal models fit using GEE.

Problem 5. A professional basketball team has hired a new data analyst to try to help
guide decision making on the team. As a first project, the analyst fits a generalized linear
marginal model to data on the league’s players. In particular, the analyst fits a model which
takes as the outcome the median number of points scored per game for each player, and
controls for various factors (the player’s height and weight, the team they play for, whether
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they were injured, and so forth). The model is fit with a longitudinal trend representing the
player’s age. The idea is to use this model to consider what the impact of aging is on the
quality of play that players manage. True or false: This model can be used to predict
the impact of aging for a specific individual. (For instance, the model can be
used to estimate the aging curve for team’s star player.)

Solution 5: [1] False. [1] A marginal model does not predict individual-level effects, and
cannot be interpreted as such. The model could be used to estimate what the average effect
of aging would be for players who are similar (in the measured variates) to the specific
individual, but it could not be used to make conclusions regarding that individual player,
directly.

Problem 6. Suppose that a linear mixed effects model is fit, given by

Yij = β0 + β1tij + b0,i + b1,itij + ϵij.

True or false: We can interpret β1 as the expected change (across the whole
population) in the outcome for a unit increase in tij.

Solution 6: [1] True. [1] In a mixed effects model, the fixed effects (β0 and β1) have a
population-average effect. In this sense, mixed effects models can be used either for marginal
inference or individual inference.

Problem 7. Suppose that the following marginal model is fit to data

E[Yij|Xij] = β0 + β1Ageij + β2Incomeij + β3Zi + β4Agei1 + β5Incomei1.

True or False: Testing the null hypothesis H0 : β4 = β5 = 0 is equivalent to a test
of the hypothesis that the longitudinal effects of age and income are equal to the
cross-sectional effects of age and income, respectively.

Solution 7: [1] True. [1] Note that the longitudinal effects can be estimated based on
E[Yij − Yi1] = β1(Ageij − Agei1) + β2(Incomeij − Incomei1). The cross-sectional effects are
based on E[Yi1] = β0+(β1+β4)Agei1+(β2+β5)Incomei1+β3Zi. As a result, the longitudinal
effects are given by β1 and β2, which the cross-sectional effects are given by β1+β4 and β2+β5.
If β4 = β5 = 0, then these two effects are equal.

Problem 8. A linear mixed effects model is fit which include 5 (b0, b1, b2, b3, b4) random
effects terms. An analyst wants to test whether 2 of those random effects can be dropped,
and so they fit the nested model with the terms removed, including only (b0, b1, b2). They
compute a likelihood ratio statistic of Λ = 8.5. True or False: At a 5% significance
level, the analyst rejects the null hypothesis that H0 : σ

2
b3
= σ2

b4
= 0.

Solution 8: [1] False. [1] The required distribution to test against is a mixture chi-square,
with 3 and 5 degrees of freedom. This results in a test statistic of 9.836774, and so since
Λ < 9.836774, we fail to reject the null hypothesis. Had this test been incorrectly com-
pared against a χ2

2 distribution, we would have used 5.991465 and as such we would have
incorrectly rejected H0.
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Problem 9. Suppose that a marginal model is fit to the data from Problem 4 (see above)
where we take

logit(E[Yij|Xij]) = β0 + β1tij + β2t
2
ij + β3Inci.

True or False: exp(1000β3) represents the odds ratio associated with propensity
to smoke for a 1000 increase in baseline income.

Solution 9: [1] True. [1] Consider two individuals, measured both with tij = t, one with
Inci = x and the other with Inci′ = 1000 + x. The difference in their outcomes will give

logit(µi′j) − logit(µij) = log
(

µi′j/(1−µi′j)

µij/(1−µij)

)
= 1000β3. As a result, exp(1000β3) is the odds

ratio comparing these two individuals.

Problem 10. Your friend, who is not taking STAT 437, is attempting to make conclusions
regarding the impact of aging in their favourite esports league. They know that you’re
taking STAT 437, and so they tell you the following: “I was interested in determining how
aging impacts competitors. As such, I fit a model using GEEs which included the age and
character for each of the competitors, and the interaction between these terms. I then fit
the model dropping the interaction term. Using a likelihood ratio test, I rejected the null
hypothesis that the interaction term was zero. As a result, I concluded that what character
a player uses changes their success rate as they age.” True or False: The procedure
outlined by your friend, as well as their conclusions, are valid.

Solution 10: [1] False. [1] Marginal models estimated via GEE are not fit using likelihood
methods. As a result, the likelihood ratio test cannot be used to test the significance of
parameters. If the friend actually used a Wald test and came to the same conclusion, then
their procedure seems valid, however, they used the wrong tests for the models they selected.
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Part 2: Conceptual Question (10 Marks)

For the following questions, provide your answers with justification and clear communication.
The answers do not need to be long, but correct responses without complete justification
will receive only partial credit.

You are asked to analyze a longitudinal dataset where the goal of the study is to compare two
treatments (a new experimental drug, with Ai = 1 as compared to an existing medication
with Ai = 0) based on their ability to lower the diastolic blood pressure over time in a
group of sick individuals. The individuals in the survey are similar (except for their assigned
treatment). Suppose that, in total, there are n = 500 patients, with each treatment receiving
250 individuals. Further suppose that blood pressure measurements are taken at times
{0, 2, 4, 6, 8}, measured in days.

Problem 11. (2 Marks) Suppose that you initially decide to fit a linear mixed effects
model, with random effects for the intercept, time (which is treated as a continuous variable
during this analysis), and treatment terms, and assume Gi = σ2I. We saw in lecture that
var(Yi) = ZiDZ ′

i + Gi. Write down Zi for patient i = 1, who is receiving the experimental
drug, and for patient i = 2 who is receiving the existing treatment.

Solution 11: [1] Z1 represents an individual receiving the experimental treatment, [1] Z2

represents an individual receiving the standard treatment:

Z1 =


1 0 1
1 2 1
1 4 1
1 6 1
1 8 1

 Z2 =


1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

 .

Problem 12. (3 Marks) How many parameters are needed to estimate the variance structure
in this model? Under what condition will var(Yi) be the same for all individuals in the study?

Solution 12: [1] In order to estimate the correlation structure, we estimate D and σ2. D
is a 3 × 3 matrix, which is constrained to be diagonal, which results in 6 parameters, plus
one variance parameter. That makes 7 total parameters.

[1] Gi is the same for all individuals since they each have the same number of measure-
ments taken. D is assumed to be shared between all members of the population. As a result,
if Zi = Zi′ for two individuals, i and i′, then they will have the same variance. [1] This
occurs when b2,i = 0 (or equivalently, var(b2,i) = 0). In words: when the random effect of
treatment is not significant, all individuals will have the same variance.

Problem 13. (2 Marks) Suppose that we find that the random effects terms included in the
model do not adequately explain the data. Without seeing any data, does it seem reasonable
to drop the random effects terms from the model without otherwise modifying the assumed
covariance structure?
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Solution 13: [1] No. [1] It seems almost certain that for blood pressure measurements taken
in the same week there is going to be some within-subject correlation. If we drop the random
effects terms, and leave Gi = σ2I, this implies independent measurements which will almost
certainly be inappropriate for the data.

Problem 14. (3 Marks) Instead of using a linear mixed effects model, you consider fitting
a linear marginal model with the same mean structure used for the previous fixed effects,
an identity link function, V (µ) = σ2, and an unstructured correlation. Your coworker says
that this was a waste of time since you already had fit this model, arguing the linear mixed
effects models are also marginal models. Is your coworker correct in this situation? Why?

Solution 14: [1] No, your coworker is not correct. [2] The marginal model you fit required 6
parameters to estimate the correlation structure. Your unstructured correlation matrix will
have

(
5
2

)
= 10 correlation parameters, which means that the pattern could not be captured

by the model you had fit (in general).
While a linear mixed effects model generally has a corresponding marginal model, they

are not equivalent to every marginal model. Moreover, marginal models are useful to fit
if population-level inference is all that’s required, since no distributional assumptions area
made.
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Part 3: Theoretical or Applied Question (20 Marks)

Please pick one of the following two problems and solve it. If you solve both only the
first problem will be looked at. The first problem corresponds to an application problem,
while the second is a theoretical question. For the application question, please provide
the code and relevant output (consider using a software like RMarkdown, or being highly
selective with what output you copy to ensure your solution is legible). For the theoretical
question, please include enough of your work to justify the steps you have taken.

Problem 15. (Application) On the course website you will find a data file schoolgirls.csv.
This reports a study of height growth for 20 girls who were followed from age 6 to age
10. The study also records the height of each girl’s mother at birth, grouping them into
1 = short, 2 = medium, and 3 = tall.

1. First, consider a model (model1) which is a linear mixed effects model with random
slope and intercept, and where the marginal mean can vary based on the mother’s
height, in addition to the girl’s age. Fit model1 using R. Then, write down this model
mathematically, identify the key assumptions for it to be valid, and report the estimated
parameters from your model. (Note: you should report the parameter values alongside
your mathematical notation, perhaps using a table, rather than simply printing the
summary output).

2. Provide an estimated 95% confidence interval for: (a) the impact on average height
comparing mothers who were tall to those who were short, (b) the variation in the
random slope, and (c) the expected height for a 12 year old girl with a medium-height
mother.

3. In addition to model1, consider fitting model2 which drops the random slope term, and
model3 which drops the random intercept term. Decide which of these three models is
most appropriate for the data, explicitly stating any hypothesis tests that you run.

4. Fit a corresponding linear marginal model, using GEE, deciding whether an unstruc-
tured, exchangeable, or autoregressive correlation structure is most appropriate for
these data.

5. Using your selected optimal models from (3) and (4): predict the subject level and
population level response for id=7 at age=10. Interpret these values.

Solution 15: For complete marks, the solution must display relevant code (and output).
The following are example solutions, and yours may differ slightly. However, you should be
justifying choices that you make, and fully explaining what you are doing (and why).

1. [5 Marks] The initial model is specified as [1]

Yij = β0 + β1Ageij + β2I(MomHeighti = 2) + β3I(MomHeight = 3) + b0,i + b1,iAgeij + ϵij.

[1] In this model we assume that bi = (b0i, b1i)
′ ∼ N(0, D), where D is an unstructured

covariance matrix. We assume that ϵi = (ϵi1, ϵi2, ϵi3, ϵi4, ϵi5) ∼ N(0, σ2I5×5). [1] We assume
that bi ⊥ ϵi. We can fit this model using:
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model1 <- lme(

fixed = height ~ age + as.factor(momheight),

random = ~ age|id,

data = schoolgirls,

method = ’ML’

)

Based on the model output we get [3]:

Parameter Description Estimated Value

β0 Fixed effect intercept. 79.2623473
β1 Fixed effect age slope. 5.7165
β2 Fixed effect for ‘medium’

height moms.
3.0303304

β3 Fixed effect for ‘tall’ height
moms.

6.2886773

σ2 Shared within-subject variance
term.

0.4758165

var(b0,i) Variance for random intercept. 9.4631505
var(b1,i) Variance for random slope. 0.2726612
cov(b0,i, b1,i) Covariance between random

intercept and slope.
-1.0808107

2. [3 Marks] Using the model we can simply call intervals. We are interested in the
intervals for β3 and var(b1,i).

intervals(model1, level=0.95)

## Approximate 95% confidence intervals

##

## Fixed effects:

## lower est. upper

## (Intercept) 76.9733510 79.262347 81.551344

## age 5.4646302 5.716500 5.968370

## as.factor(momheight)2 0.1709973 3.030330 5.889663

## as.factor(momheight)3 3.4293442 6.288677 9.148010

## attr(,"label")

## [1] "Fixed effects:"

##

## Random Effects:

## Level: id

## lower est. upper

## sd((Intercept)) 1.8367945 3.0762234 5.1519918

## sd(age) 0.3623740 0.5221697 0.7524304
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## cor((Intercept),age) -0.8927255 -0.6728529 -0.1941870

##

## Within-group standard error:

## lower est. upper

## 0.5768058 0.6897945 0.8249162

[1] From this output we can see that the β̂3 = 6.289 with a 95% CI of (3.43, 9.15). [1]
We also see that var(b1,i) = 0.52216972 = 0.273, with a 95% CI of (0.131, 0.566). We are
also interested in predicting a new observation, at the population level, for a 12 year old girl
with a medium height mother.

[1] We can get this via β̂0+ β̂1×12+ β̂3 and the corresponding standard errors. This gives
a point estimated of 150.891 with a 95% CI of (148.31, 153.471). Note, if you did not use
this function and instead computed from the standard errors, your answers may be slightly
different.

3. [5 Marks] We can get the other two models simply by calling update. [1]

model2 <- update(model1, random = ~ 1|id)

model3 <- update(model1, random = ~ age - 1|id)

Both of these models are nested within model1. We can, as such, test the fit of each
model respectively. [2] H0 : σ

2
b1
= 0. The test statistic can be read off of an anova() call as

38.3165526. This will get compared to the critical value from a mixture χ2 distribution with
df1 = 1 and df2 = 2. This results in a p-value of 2.6920638 × 10−9, which is less than 0.05,
so we reject H0. This model is not acceptable..

We can do exactly the same for comparing model1 and model3. [1] H0 : σ2
b0

= 0. The
test statistic can be read off of an anova() call as 13.1858666. This will get compared to
the critical value from a mixture χ2 distribution with df1 = 1 and df2 = 2. This results in
a p-value of 8.2604188 × 10−4, which is less than 0.05, so we reject H0. This model is not
acceptable..

[1] As a result we conclude that model1 is the most appropriate.
4. [3 Marks] We next use geepack::geeglm() to fit three models. [1] Recall to use GEE

correctly the data needs to be sorted by id and age. [1] We fit these three models.

schoolgirls <- schoolgirls[order(schoolgirls$id, schoolgirls$age), ]

unstr <- geeglm(height ~ age + as.factor(momheight),

corstr = "unstr",

id = id,

family = gaussian,

data = schoolgirls)

exch <- geeglm(height ~ age + as.factor(momheight),

corstr = "exch",

id = id,

family = gaussian,

data = schoolgirls)
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ar1 <- geeglm(height ~ age + as.factor(momheight),

corstr = "ar1",

id = id,

family = gaussian,

data = schoolgirls)

cbind(QIC(unstr), QIC(exch), QIC(ar1))

## [,1] [,2] [,3]

## QIC 921.084575 878.674449 883.339608

## QICu 919.878499 875.308407 884.098014

## Quasi Lik -455.939249 -433.654204 -438.049007

## CIC 4.603038 5.683021 3.620797

## params 4.000000 4.000000 4.000000

## QICC 926.025751 879.312747 883.977906

[1] In order to select models we use the QIC. Because we are comparing various models
with differing correlations (but the same mean) we consider both QIC and CIC and want the
lowest values. Based on this, we would select either the exchangeable correlation or the AR1,
as the two options disagree! Either is acceptable, but the unstructured is not necessary!

5. [4 Marks] [2] Using model1 we can predict both of these values. We can either do this
by extract the random effects for the corresponding row, or by using predict. You may run
into some issues with the factor levels of momheight. One way around this is as follows.

which_idx <- which(schoolgirls$id == 7 & schoolgirls$age == 10) # Correct Row

predict(model1, newdata=schoolgirls, level=c(0,1))[which_idx,]

## id predict.fixed predict.id

## 87 7 139.4577 137.8236

As a result, we can see that the population average is predicted at 139.4577 for girls who
are 10 with a medium height mom, while the individual level prediction was 137.8236. As a
result, girl 7 in the data has a subject-level effect which is negative.

[1] Using the exch (or ar1) model we can predict the population average effect for a girl
like id=7 in the data. This takes L = (1, 10, 1, 0) and simply estimates either 138.9444286
using the exchangeable assumption or 138.7530841 using the AR1 model (only need to pro-
vide one of these). These are both slightly less than the estimated population effect in the
mixed effects model.

[1] We cannot estimate a subject specific effect in the marginal model, as marginal
models do not estimate subject specific effects!
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Problem 16. In class we discussed the best linear unbiased predictor (BLUP) for random
effects. We stated that the best predictor (in terms of MSE) for bi is going to be given by

E[bi|Yi] = DZ ′
iV

−1
i (Yi −Xiβ).

In this question you will prove that this is true!

1. Suppose that g(Wi) is a predictor for Ωi, where Ωi and Wi are arbitrary random
variables. Prove that the MSE of such a predictor is minimized when g(Wi) = E[Ωi|Wi].
Recall that the MSE is defined as

E
{
[Ωi − g(Wi)]

2
}
.

Hint: Recall the law of iterated expectation.

2. Demonstrate that, assuming correct specification of a linear mixed effects model as

Yi = Xiβ + Zibi + ϵi,

we will have that the joint distribution of (Yi, bi) is a multivariate normal. Recall that

Yi|bi ∼ N(Xiβ + Zibi, σ
2I)

bi ∼ N(0, D).

Here we take Yi to be K × 1 and bi to be q × 1.

Hint: it may help to note that the moment generating function of a multivariate
normal, W ∼ N(µ,Σ), is

MW (t) = E[et
′W ] = exp

(
µ′t+

1

2
t′Σt

)
.

Further, if (W,Ω) are jointly multivariate normal then the MGF, M(W,Ω)(t) =
E[exp(t′1W + t′2Ω)], where t = (t′1, t

′
2)

′. Finally, if two random quantities have the
same MGF, then they have the same distribution.

3. Appealing to parts (1) and (2) of the question, demonstrate that the best predictor of
bi (as a function of Yi) is given by

DZ ′
iV

−1
i (Yi −Xiβ),

where Vi = ZiDZ ′
i+σ2I. Moreover, indicate the variance of the BLUP (e.g. var(bi|Yi)).

Hint: It may be helpful to know that if(
Y1

Y2

)
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

then Y1|Y2 will follow a normal distribution with mean µ1 + Σ12Σ
−1
22 (Y2 − µ2) and

variance Σ11 − Σ12Σ
−1
22 Σ21. Here the mean and variance are partitioned based on the

sizes of Y1 and Y2.
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Solution 16: Any valid proofs of the claims made will suffice. I am showing those that I
think are most approachable, but you will receive full marks for any valid argument.

1. [4 Marks] Note that we want to minimize E[(Ωi − g(Wi)
2]. If we consider adding and

subtracting E[Ωi|Wi] in the brackets, we get

E
[
(Ωi − E[Ωi|Wi] + E[Ωi|Wi]− g(Wi))

2
]

= E
[
(Ωi − E[Ωi|Wi])

2
]
+ 2E[(Ωi − E[Ωi|Wi])(E[Ωi|Wi]− g(Wi))] + E[(E[Ωi|Wi]− g(Wi))

2]

= E [var(Ωi|Wi)] + 0 + E[(E[Ωi|Wi]− g(Wi))
2].

Note that here, E[var(Ωi|Wi)] is independent of our choice of g(Wi). The 0 second term
comes by using iterated expectations, conditional on Wi, where the first part of the product
becomes 0. That leaves just the third term. We know that E[(E[Ωi|Wi] − g(Wi))

2] ≥ 0,
since it’s an expectation of a non-negative function, and as a result the MSE is minimized
by solving E[(E[Ωi|Wi]− g(Wi))

2] = 0, which will occur if g(Wi) = E[Ωi|Wi], as required.

2.[12 Marks] We will demonstrate that the two are jointly normal, using the MGF. This can
be done through densities, but that’s more work. Note that, following from the hint, we
have

MYi|bi(t) = E[et
′Yi |bi] = exp

(
(Xiβ + Zibi)

′t+
1

2
t′(σ2I)t

)
Mbi(t) = exp

(
1

2
t′Dt

)
M(Yi,bi)(t) = E

[
et

′
1Yi+t′2bi

]
= E

[
E
[
et

′
1Yi+t′2bi

∣∣∣ bi]]
= E

[
E
[
et

′
1Yi

∣∣∣ bi] et′2bi]
= E

[
MYi|bi(t1)e

t′2bi
]

= E

[
exp

(
(Xiβ + Zibi)

′t1 +
1

2
t′1(σ

2I)t1 + t′2bi

)]
= exp((Xiβ)

′t1 +
1

2
t′1(σ

2I)t1)E [exp {(Zibi)
′t1 + t′2bi}]

= exp((Xiβ)
′t1 +

1

2
t′1(σ

2I)t1)E [exp {(Z ′
it1 + t2)

′bi}]

= exp((Xiβ)
′t1 +

1

2
t′1(σ

2I)t1)Mbi(Z
′
it1 + t2)

= exp

(
(Xiβ)

′t1 +
1

2
t′1(σ

2I)t1 +
1

2
(Z ′

it1 + t2)
′D(Z ′

it1 + t2)

)
= exp

(
(Xiβ)

′t1 +
1

2

[
t′1(σ

2I)t1 + t′1(ZiDZ ′
i)t1 + t′1(ZiD)t2 + t′2DZ ′

it1 + t′2Dt2
])

= exp

(
µ′t+

1

2
t′Σt

)
.
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Here we are taking

µ =

[
Xiβ
0q×1

]
Σ =

[
(σ2I) + ZiDZ ′

i ZiD
DZ ′

i D

]
t = (t′1, t

′
2)

′.

As a result, we conclude that (Yi, bi) ∼ N(µ,Σ).

3. [4 Marks] Part 1 indicates that E[bi|Yi] is the best predictor (as a function of Yi) of bi.
Using the given property of multivariate normality, we find that bi|Yi ∼ N(µ∗,Σ∗) with

µ∗ = 0+DZ ′
i

(
σ2 + ZiDZ ′

i

)−1
(Yi −Xiβ)

= DZ ′
iV

−1
i (Yi −Xiβ)

Σ∗ = D −DZ ′
iV

−1
i ZiD.

This gives us the required form for the BLUP, and the variance of the estimator.
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