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STAT 437 - Assignment 1
Due: Friday, January 21 on Crowdmark

Resubmit: Friday, February 4 on Crowdmark

This assignment covers the materials contained in Lecture 002 through to Lecture 009.
Reminder that you are permitted to discuss to these problems with classmates, but every
student must submit their own solutions which are their own work (including any code,
figures, etc.). Please indicate any students that you discussed solutions with on
your submission. Please ensure that your submissions on Crowdmark are legible, and
separated based on the problems included at the submission link. Submissions can be

handwritten or typeset.

Part 1: True or False (20 Marks; 2 Marks Each)

For each of the following problems indicate whether the statement is true or false, and give
a short justification for your answer. Correct answers without justification will receive only
partial credit.

Problem 1. In an attempt to study the effects of long-term exposure to birds on individual
health, researchers compared the rates of lung disease in long-term bird owners (15+ years)
to the rates of lung disease in an (otherwise similar) group of new bird owners (<1 year),
and a demographically-matched control group. They estimated that long-term bird owners
were nearly twice as likely to have developed serious lung diseases. True or false: assum-
ing that the impact on health was correctly computed, this is an example of a
longitudinal effect.

Solution 1: [1] False. [1] Estimating a longitudinal effect requires a longitudinal study
(following the same individuals overtime). This is instead a cohort effect, comparing the
cohorts of long-term bird owners, to short-term bird owners, and non-bird owners.

Problem 2. Suppose that it is known that, as individuals age, their personality (as mea-
sured by the Big 5 Personality traits) changes independently of their past-self. That is, the
correlation of these values (when measured distantly from one another) is expected to be
zero, due to these measures being independent. True or false: a study which follows
individuals from childhood through adulthood, considering the development of
their personality traits, can be analyzed using standard (e.g., linear or GLM)
regression methods.

Solution 2: [1] True. [1] Longitudinal methods are required because the repeated measure-
ments tend to be dependent/correlated. If repeated measurements are truly independent,
then the data could be transformed to long format, and analyzed as though it had been a
set of IID individuals.
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Problem 3. You are given a dataset in long format. The dataset contains information on
100 individuals. It contains a column for their ID, for the time index that the measurement
was taken, their outcome, and a treatment indicator. The first several rows of this dataset
are shown below, sorted by ID.

ID Time Treatment Outcome
1 1 1 30.5
1 2 1 35
1 3 1 35
2 2 0 26
2 3 0 24.5
2 5 0 20
...

...
...

...

True or false: when translated into wide format, the data frame will have 100
rows and 5 columns.

Solution 3: [1] False. [1] This is not guaranteed. If these data were balanced and each
individual had 3 measurements, then it would be true, since we would have 1 column for ID,
1 column for treatment, and 3 columns for outcomes. However, these data are not balanced,
and so we will have a column for every unique time measurement (which is at least 4 based
on what is shown, and possibly more!).

Problem 4. True or false: in a linear regression model, in order to produce valid
Wald-type confidence intervals for the coefficients (e.g., β̂ ± 1.96× s.e.(β̂) or sim-
ilar), we must assume normality of the outcome (conditional on the covariates).

Solution 4: [1] False. [1] Wald-type confidence intervals are valid in small samples only
when the outcomes are assumed to be conditionally normal. If the sample size is sufficiently
large, then as long as the other assumptions for OLS are met, the Wald-type intervals are
(asymptotically) valid.

Problem 5. Consider the following expressions for the conditional expectation of Y given
X:

E[Y |X] = β0 + β1X (1)

E[Y |X] = β0 + β1 log(X) (2)

E[Y |X] = β0 + exp (α1 +X) (3)

E [ log(Y )|X] = exp(α0) + β1X
2 (4)

E[Y |X] = exp (α0 + α1X) (5)

True or false: all these models, except for (5), express a linear relationship in
the conditional mean which is estimable with standard (OLS) linear regression.
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Solution 5: [1] True. [1] Every model except for (5) is linear in the parameters, which is
to say can be expressed as E[W |Z] = γ0 + γ1Z by correctly choosing W and Z; then γ0 and
γ1 can be functionally related to the listed parameters. (5) cannot be since it requires the
multiplication of two terms, rather than the summation.

[Not Required for Marks] In (1) we have W = Y , Z = X, and γ = β. In (2) we have W = Y ,
Z = log(X), and γ = β. In (3) we have W = Y , Z = exp(X), γ0 = β0, and γ1 = exp(α1). In
(4) we have W = log(Y ), W = X2, γ0 = exp(α0), and γ1 = β1. In (5) the model simplifies
to exp(α0) exp(α1X): if we take a log(·) of both sides this can be fit using a GLM, but not
standard OLS.

Problem 6. Suppose we have fit a linear marginal model, with a structure given by

E[Yij|Xij] = β0 + β1I(tj = 2) + β2I(tj = 3) + β3I(tj = 4) + β4Trti + β5I(Agei > 50)

+ β6I(tj = 2)Trti + β7I(tj = 3)Trti + β8I(tj = 4)Trti

+ β9I(tj = 2)I(Agei > 50) + β10I(tj = 3)I(Agei > 50) + β11I(tj = 4)I(Agei > 50).

Here, we have tj representing the time index (that is, I(tj = 2) is 1 if it is time 2, and is 0
otherwise), the Trti is a binary indicator for active treatment, and I(Agei > 50) is 1 for any
individual who was over 50 years old when the study began. Take

L =

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11( )0 0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 −1 0 0 1

True or false: testing the hypothesis Lβ̂ = 0 performs a test of whether or not the
time trend associated with treatment is equivalent to the time trend associated
with being over 50 years old, and this hypothesis should be tested against a χ2

3

distribution.

Solution 6: [1] True. [1] If Lβ = 0 then we equivalently find that β6 = β9, β7 = β10, and
β8 = β11. These correspond to the terms that modify the time trends for Treatment and
age, respectively. The distribution is χ2

3 since L has rank 3.

Problem 7. Two linear marginal models are fit on the same data, using the same conditional
mean structure. The first makes an auto-regressive assumption for the correlation pattern
matrix (i.e., cor(Yij, Yiℓ) = ρ|j−ℓ|) and the second makes the exchangeable assumption (i.e.,
cor(Yij, Yiℓ) = ρ). Both models are fit using maximum likelihood. The log-likelihood for the
first model is found to be −1225 and the log-likelihood for the second model −1260.

True or false: we can test the hypothesis that the second model is adequate using
a LRT, where the test statistic is Λ = 70, with a distribution of χ2

1, resulting in a
p-value < 0.001, and a rejection of the null hypothesis.
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Solution 7: [1] False. [1] These models are not nested within one another, and as a result
we cannot use the likelihood ratio test to test whether they are adequate.

Problem 8. True or false: The Poisson distribution (with parameter λ) is an
exponential family distribution with: (i) canonical parameter θ = log(λ), (ii)
b(θ) = eθ, (iii) a(ϕ) = 1, (iv) c(y, ϕ) = − log(y!), and (v) canonical link g(x) = log(x).

Solution 8: [1] True. [1] The distribution function for a Poisson random variable is written

f(y;λ) = exp−λ λy

y!
. This can be re-written as

f(y;λ) = exp {y log(λ)− λ− log(y!)} .
This gives θ = log(λ), a(ϕ) = 1, b(θ) = eθ, and c(y, ϕ) = − log(y!). Since E[Y ] = λ = eθ,
then g(x) = log(x) is the canonical link since g(µ) = log(λ) = log(eθ) = θ.

Problem 9. Suppose that we have count data which are known to be highly over-dispersed,
relative to the Poisson assumption (that is, var(Y ) is much larger than E[Y ]). Suppose
further that E[Y |X] = exp(β0 + β1X), for unknown β0 and β1. A very large sample of
independent realizations is taken. Consider

U(β) =
n∑

i=1

(
1
xi

)
{yi − exp(β0 + β1xi)} .

True or false: Solving U(β̂) = 0, will produce a consistent estimator for β.

Solution 9: [1] True. [1] This is a quasi-likelihood estimator, with V (µi) = µi specified,
that is

U(β) =
n∑

i=1

(
1
xi

)
exp(β0 + β1xi) (exp(β0 + β1xi))

−1 (yi − exp(β0 + β1xi)) .

The variance is incorrectly specified (does not account for over-dispersion), however, since
the sample is sufficiently large, the asymptotic distribution will still be correct (since the
mean model is correctly specified).

Problem 10. A new, experimental treatment is being tested as a means of delaying the
onset of dementia. Suppose a marginal linear model has been fit, using Ai to represent the
treatment assignment (binary indicator, with Ai = 0 for placebo and Ai = 1 for experimental
treatment) for individual i, and where tj is time, treated as a continuous variate. Consider
the model given by

E[Yij|Ai, tj] = β0 + β1tj + β2Aitj.

True or false: β1 is interpreted as the expected change in outcome as time passes
(i.e., for a 1 unit increase in time) for those in the placebo group and β2 represents
the expected change in outcome as time passes (i.e., for a 1 unit increase in time)
for those in the experimental treatment group.

Solution 10: [1] False. [1] β1 is the longitudinal effect for those in the placebo group
however β2 is not the longitudinal effect for those in the active treatment group. Instead,
β2 represents the difference in the time effect between the placebo and active treatment
groups, making β1 + β2 the time effect for the experimental treatment group.
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Part 2: Conceptual Question (10 Marks)

For the following questions, provide your answers with justification and clear communication.
The answers do not need to be long, but correct responses without complete justification
will receive only partial credit.

Suppose that the viral load (a continuous outcome) is repeatedly measured on HIV positive
subjects from three treatment groups: a placebo (control) group, a low-dose group, and a
high-dose group. We treat time, tij as measuring the number of days since baseline enrollment
in the study. At baseline, individuals had no discernible differences in viral load and were
assigned to their treatment groups completely at random.

Suppose that a marginal linear model is fit to the data such that,

E[Yij|Xij, tij] = β0 + β1xi1tij + β2xi2tij + β3xi3tij,

where xi1 = 1 if the patient is in the control group, xi2 = 1 if the patient is in the low-dose
group, and xi3 = 1 if the patient is in the high-dose group (with these indicators taking 0
otherwise). The following questions all relate to this model.

Problem 11. (2 Marks) There is no main effect of treatment included in this model. Explain
why this is a natural choice and indicate what the inclusion of (non-zero) treatment effects
would indicate about the underlying scenario.

Solution 11: [1] This is a natural choice since the treatment groups had no differences in
observed outcome at baseline (tij = 0). They were randomized to their treatments without
regard for their current viral load, and so when tij = 0 we should not expect a difference (on
average) between these groups.
[1] If we had included a non-zero treatment effect, this would correspond to the groups
starting with different levels of viral load. This might be reasonable if (for instance) the
group receiving high-dose therapy started with higher viral loads.

Problem 12. (3 Marks) Suppose that we wish to test whether or not the response of the
low-dose group changes over time. Write down the hypothesis in terms of model parameters,
as a general linear hypothesis of the model (e.g., Lβ = c for suitable L and c) and specify
distribution under the null.

Solution 12: [1] This is a test of H0 : β2 = 0. [1] We would take L = (0, 0, 1, 0) with c = 0.
[1] The distribution under the null is χ2

1, since L is rank 1.

Problem 13. (3 Marks) Suppose that we wish to test whether the responses of the low-dose
and high-dose groups change at the same rate over time, while the control group exhibit no
time-trend. Write down the hypothesis in terms of model parameters, as a general linear
hypothesis of the model (e.g., Lβ = c for suitable L and c) and specify distribution under
the null.
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Solution 13: [1] This is a test of the joint hypothesis, H0 : β2 = β3 and H0 : β1 = 0. [1] We
can take

L =

(
0 0 1 −1
0 1 0 0

)
with c = 0. [1] The distribution under the null is χ2

2, since L is rank 2.

Problem 14. (2 Marks) Suppose that we consider two individuals, one in the low-dose

group, and one in high-dose group. If it is found that β̂2 = 0.5β̂3 < 0, what is the predicted
difference in viral load between these two patients after 10 days? Suppose that the first
individual remains on treatment for 60 days. How long would the second individual need to
remain on treatment to have an equivalent viral load prediction?

Solution 14: [1] After 10 days, the first patient has a predicted viral load of β̂1 + 10β̂2 =

β̂1 + 5β̂3 (since β̂2 = 0.5β̂3). The second has a response of β̂1 + 10β̂3. As a result, the

difference between the two is −5β̂2. [1] If the first individual is treated for 60 days, they will

have a predicted response of β̂1+30β̂3, which is the same predicted response that the second
individual will have after 30 days.
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Part 3: Theoretical or Applied Question (20 Marks)

Please pick one of the following two problems and solve it. If you solve both only the
first problem will be looked at. The first problem corresponds to an application problem,
while the second is a theoretical question. For the application question, please provide
the code and relevant output (consider using a software like RMarkdown, or being highly
selective with what output you copy to ensure your solution is legible). For the theoretical
question, please include enough of your work to justify the steps you have taken.

Problem 15. (Application) On the course website you will find a data file dental.csv.
This reports a study of dental growth where measurements of the distance (in mm) from
the center of the pituitary gland to the pteryomaxillary fissure were obtained on 11 girls and
16 boys at ages 8, 10, 12, and 14. The data file contains these observations in wide format,
recording the ID, Sex, and outcomes (Y1, Y2, Y3, Y4).

1. Generate relevant plots for the data that illustrate how the data evolve overtime, to
help inform modelling. Explain what information your plots show.

2. Fit a fully saturated, marginal linear model to the data, with time and sex both treated
as discrete. Use an unstructured correlation matrix and allow for variances to change
over each week. Based on your fitted saturated model, is the time trend the same
between the two groups?

3. Based on your model, provide an estimated 95% confidence interval for the mean
distance for 8 year old boys, and 14 year old girls.

4. Determine whether it is possible to simplify the assumed correlation and variance
structure. Consider: (1) a model with assumed constant variance but unconstrained
correlation, (2) a model with compound symmetry but differing variance, and (3) a
model which assumes constant variance and uses an auto regressive correlation struc-
ture. Are any of these models appropriate?

5. A doctor is interested in the distance measurements for 13 year old girls, and 15 year
old boys. Provide 95% confidence interval for the mean predictions of these categories,
and indicate whether or not these predictions are appropriate.

Solution 15: For complete marks, the solution must display relevant code (and output).
The following are example solutions, and yours may differ slightly. However, you should be
justifying choices that you make, and fully explaining what you are doing (and why).

1. (3 marks total). [2] marks for selecting plot(s) which do a good job of illustrating time
trends in the data, and [1] mark for describing those trends.

xyplot(Y ~ time | Sex,

groups = ID,

data = dental_long,

panel = function(x, y){
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panel.xyplot(x, y, type=’p’)

panel.linejoin(x, y, fun=mean, horizontal=F, lwd=2, col=1)

})

time

Y

20

25

30

1.0 1.5 2.0 2.5 3.0 3.5 4.0

F

1.0 1.5 2.0 2.5 3.0 3.5 4.0

M

From this plot we see the (left-hand panel) female and (right-hand panel) male growth,
over the four time points (8 through 14 years). The plotted lines illustrate the means
(within groups) at each time point, to show the overall trend in the data. We can
see that the spread of points appears to be fairly consistent overtime, and that both
groups exhibit a (mostly linear) upward trend. The males start with larger values
at baseline and appear to increase at a faster rate. Compared to the other ages, the
increase from 8 to 10 year old males appears to be less pronounced, whereas the
increases appear to be fairly constant over time for females.

2. (6 marks total). [1] mark for the correct formula (time as factor, with interaction), [1]
mark for the correct variance structure, [1] mark for the correct correlation structure,
[1] mark for indicating the correct hypothesis test, [1] mark for computing the correct
test statistic/p-value, and [1] mark for getting the correct conclusion. Note: if using
LRT, you must have used ML.

saturated.model <- gls(Y ~ as.factor(time)*as.factor(Sex),

data = dental_long,

weights = varIdent(form = ~ 1 | as.factor(time)),

correlation = corSymm(form = ~1 | ID),

method = ’ML’)
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Parameter Factor Value Standard.Error

β0 1 21.1818 0.7017
β1 I(tj = 2) 1.0455 0.6155
β2 I(tj = 3) 1.9091 0.6068
β3 I(tj = 4) 2.9091 0.6729
β4 I(Sexi = M) 1.6932 0.9115

β5 I(tj = 2)I(Sexi = M) -0.1080 0.7995
β6 I(tj = 3)I(Sexi = M) 0.9347 0.7883
β7 I(tj = 4)I(Sexi = M) 1.6847 0.8741

This first model can be fit using either ML or REML, but importantly should have
time treated as factor, must have weights = varIdent(form = ~ 1|time) and
correlation = corSymm(form = ~1|ID). In order to answer whether the time trend
is the same between groups, we are testing H0 : β5 = β6 = β7 = 0. There are two
main ways of conducting this test, either through the specification of

L =

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ,

and then testing H0 : Lβ = 0. Alternatively you could fit the nested model without
the interaction term, and conduct a LRT. To use this second method the model must
be fit using ML.

Method 1:

L <- rbind(c(0,0,0,0,0,1,0,0),

c(0,0,0,0,0,0,1,0),

c(0,0,0,0,0,0,0,1))

beta.hat <- coef(saturated.model)

v.beta.hat <- saturated.model$varBeta

LB <- c(0,0,0) # Value under H0

W <- t(L%*%beta.hat - LB)%*%

solve(L%*%v.beta.hat%*%t(L))%*%

(L%*%beta.hat - LB)

1 - pchisq(W, df = 3) # df=3 since rank(L) = 3

## [,1]

## [1,] 0.0322315
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We find a test statistic value of 8.789, which corresponds to a p-value of 0.0322 and
as a result we reject the null hypothesis (at a 5% significance level). That is, there is
evidence that the two groups have different time trends.

Method 2:

reduced.model <- gls(Y ~ as.factor(time)+as.factor(Sex),

data = dental_long,

weights = varIdent(form = ~ 1 | as.factor(time)),

correlation = corSymm(form = ~1 | ID),

method = ’ML’)

anova(reduced.model, saturated.model)

## Model df AIC BIC logLik Test L.Ratio p-value

## reduced.model 1 15 454.6432 494.8752 -212.3216

## saturated.model 2 18 452.5093 500.7877 -208.2546 1 vs 2 8.133946 0.0433

Based on the LRT of the reduced model (without interactions) and the saturated model
(with interactions), we find a LRT statistics of 8.134 which corresponds to a p-value
(based on χ2

3 distribution) of 0.0433 and so we reject the null hypothesis and conclude
that the two groups differ substantially in their time trends.

3. (3 Marks Total) [1] mark for the correct L matrices, [1] mark for the correct standard
errors, and [1] mark for using them correctly.

Generally, when estimating with regards to variance/correlation parameters you would
want to use REML rather than ML. This is not strictly required (but advisable due to
the small sample size). In this case, the results of the model do not seem to materially
change whether ML or REML is used. Consider that an 8 year old male is represented
by L = (1, 0, 0, 0, 1, 0, 0, 0) and a 14 year old female by L = (1, 0, 0, 1, 0, 0, 0, 0). To
generate 95% confidence intervals for these predictions we can use the following.

With REML

saturated.model.REML <- gls(Y ~ as.factor(time)*as.factor(Sex),

data = dental_long,

weights = varIdent(form = ~ 1 | as.factor(time)),

correlation = corSymm(form = ~1 | ID),

method = ’REML’)

L <- rbind(c(1,0,0,0,1,0,0,0),

c(1,0,0,1,0,0,0,0))

beta.hat <- coef(saturated.model.REML)

se <- sqrt(diag(L%*%saturated.model.REML$varBeta%*%t(L)))

point_est <- L %*% beta.hat
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cbind(

point_est - qnorm(0.975)*se,

point_est,

point_est + qnorm(0.975)*se

)

## [,1] [,2] [,3]

## [1,] 21.73474 22.87500 24.01526

## [2,] 22.77139 24.09091 25.41043

As a result, the estimated mean for 8 year old males is 22.875 with a 95% CI of
(21.73, 24.02). For 14 year old females, the estimated mean is 24.09 with a 95% CI of
(22.77, 25.41).

4. (4 Marks) [1] mark for each of the 3 models being fit correctly, [1] mark for all of the
hypothesis tests being correctly reported.

In order to test the fit of the differing models, we simply fit new models and use the
ANOVA call in R. Note that constant variance with unconstrained correlation, compound
symmetry with unconstrained variance, and constant variance with AR(1) correlation
are all nested within the saturated model we have fit. Also, as a helpful hint, we can
take a model that we have already fit, and run update() to change the call!

model.1 <- update(saturated.model, weights = varIdent(form=~1))

model.2 <- update(saturated.model, correlation = corCompSymm(form=~1|ID))

model.3 <- update(saturated.model,

weights = varIdent(form = ~1),

correlation = corAR1(form = ~1|ID))

anova(saturated.model, model.1)

## Model df AIC BIC logLik Test L.Ratio p-value

## saturated.model 1 18 452.5093 500.7877 -208.2546

## model.1 2 15 448.3770 488.6090 -209.1885 1 vs 2 1.867728 0.6003

anova(saturated.model, model.2)

## Model df AIC BIC logLik Test L.Ratio p-value

## saturated.model 1 18 452.5093 500.7877 -208.2546

## model.2 2 13 450.4892 485.3569 -212.2446 1 vs 2 7.979904 0.1573

anova(saturated.model, model.3)
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## Model df AIC BIC logLik Test L.Ratio p-value

## saturated.model 1 18 452.5093 500.7877 -208.2546

## model.3 2 10 458.6627 485.4840 -219.3313 1 vs 2 22.15336 0.0046

Based on this output, it seems that we could make either of the first simplifying
assumptions (we fail to reject the null that the parameter constraints are valid), while
the third model is rejected (even at a 1% significance level). Correspondingly, we could
likely specify a more parsimonious model which is desirable.

5. (4 Marks) [1] mark for fitting a model with time as the continuous variate, [1] mark
for using this to generate valid predictions (watch that the time scale is considered
correctly), [1] mark for a discussion of whether the model is appropriate, [1] mark for
a discussion of extrapolation.

In order to make predictions when the ages are 13 or 15, we cannot treat time as a
discrete variable. As a result, we need to re-fit this model, using some continuous
structure of time. The plots suggest that a linear time trend will likely suffice. We also
likely want different time trends for males and females, as well as different baseline
values (since they appear to change at different rates, and start from different spots).

We also may want to re-scale time. This is not strictly necessary, but you need to
make sure to convert to the correct timescale if you do not. On the current timescale,
an increase of time by 1 corresponds to two years, and t = 1 is when the age is 8. As
a result, 13 will be t = 3.5 and 15 will be t = 4.5. I re-scale my times instead!

dental_long$time <- 2*(dental_long$time - 1) + 8

linear.model <- gls(Y ~ time*as.factor(Sex),

correlation = corSymm(form = ~1|ID),

weights = varIdent(form = ~1), # Use constant variance.

data = dental_long,

method = ’ML’)

It is worth checking the model fit of our new model. We can simply compare the AIC

and BIC from the saturated and the new linear model as a first pass. Our new model
has an AIC of 443.234835 and a BIC of 472.7382785, while the old fit had values of
452.5093018 and 500.7876639, respectively. Smaller values are preferable, and so we
can use this to justify the use of this model.

Alternatively, we can actually take a formal hypothesis test. The linear model is nested
within the discrete time model, albeit in a way that may be non-obvious. If we restrict
2β1 = β2, 3β1 = β3, 2β5 = β6 and 3β6 = β7, then since the time gap between the
factor levels corresponding to those different parameters is constant (2 years) this will
be equivalent to forcing the linear relationship. As a result, we can actually perform a
nested hypothesis test as to the permissibility of this assumption.
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# Refit the model using the same variance assumption

factor.model <- gls(Y ~ as.factor(time)*as.factor(Sex),

correlation = corSymm(form = ~1|ID),

weights = varIdent(form = ~1), # Use constant variance.

data = dental_long,

method = ’ML’)

# Test the nested models

anova(factor.model, linear.model)

## Model df AIC BIC logLik Test L.Ratio p-value

## factor.model 1 15 448.3770 488.6090 -209.1885

## linear.model 2 11 443.2348 472.7383 -210.6174 1 vs 2 2.857805 0.5819

With a p-value of 0.5819 we fail to reject the null and our formal test seems to agree
with the AIC and BIC criteria above. (We could also test this with a compound linear
hypothesis, to similar results!)

One other caveat on whether predictions from this model will be appropriate is that
we are necessarily extrapolating beyond what is observed in the data. For a prediction
at age 13 this is not so much an issue as we have data observed on both sides, and can
be fairly confident that the trend continues in the intervening years (supposing there is
nothing particularly special about even ages). However, for age 15 we are extrapolating
out of the sample that we took: we should always be cautious with this. If we had
scientific evidence that the trends change after the age of 14 this prediction may not
be appropriate. As a result, we must bracket this prediction with the knowledge that
it is only valid if the observed trend continues.

L <- rbind(c(1,13,0,0),

c(1,15,1,15))

beta.hat <- coef(linear.model)

se <- sqrt(diag(L%*%linear.model$varBeta%*%t(L)))

point_est <- L %*% beta.hat

cbind(

point_est - qnorm(0.975)*se,

point_est,

point_est + qnorm(0.975)*se

)

## [,1] [,2] [,3]

## [1,] 22.38062 23.59785 24.81509

## [2,] 27.12158 28.29139 29.46119
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As a result, we estimate that a 13 year old girls will have mean distances of 23.60 (with
a 95% CI of (22.38, 24.82)) and that 15 year old boys will have mean distances of 28.29
(with a 95% CI of (27.12, 29.46)).

Problem 16. (Theoretical) Consider a marginal linear model where we take the mean to
be given by µi = Xiβ and the variance Σi = σ2R(ρ). Recall that we stated that the MLE
for β are given by

β̂ =

(
n∑

i=1

X ′
iΣ

−1
i Xi

)−1 n∑
i=1

X ′
iΣ

−1
i Yi.

1. If Σi = σ2R(ρ), show that the MLE of β does not depend on σ2.

2. Derive the maximum likelihood estimator for σ2.

3. What is the expression for the profile log-likelihood of ρ (can be in terms of β̂ and σ̂2)?

4. Prove that the MLE for the marginal linear model simplify to the OLS estimators if
we assume constant variance and independent correlation.

5. Show that, if the data are balanced with equal spacing between follow-ups, assuming a
first-order auto regressive correlation structure is equivalent to assuming an exponential
correlation structure.

Solution 16: 1. (3 Marks Total) Here we can simply make an algebraic substitution into
the MLE, as written.

β̂ =

(
n∑

i=1

X ′
iΣ

−1
i Xi

)−1 n∑
i=1

X ′
iΣ

−1
i Yi

=

(
n∑

i=1

X ′
i[σ

2Ri(ρ)]
−1Xi

)−1 n∑
i=1

X ′
i[σ

2Ri(ρ)]
−1Yi

=

(
1

σ2

n∑
i=1

X ′
iRi(ρ)

−1Xi

)−1
1

σ2

n∑
i=1

X ′
iRi(ρ)

−1Yi

= σ2

(
n∑

i=1

X ′
iRi(ρ)

−1Xi

)−1
1

σ2

n∑
i=1

X ′
iRi(ρ)

−1Yi

=

(
n∑

i=1

X ′
iRi(ρ)

−1Xi

)−1 n∑
i=1

X ′
iRi(ρ)

−1Yi.

As a result, this expression does not depend on σ2 and so β̂ is functionally independent
of σ2.
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2. (8 Marks total) We saw in lecture that the log-likelihood is given by

ℓ(β, σ2, ρ) =
n∑

i=1

−k

2
log |2π| − 1

2
log |Σi| −

1

2
(Yi −Xiβ)

′ Σ−1
i (Yi −Xiβ) .

Taking the assumption that Σi = σ2Ri(ρ), and noting that Ri(ρ) is assumed constant
over i, we get

ℓ(β, σ2, ρ)

=
n∑

i=1

−k

2
log |2π| − 1

2
log(σ2)− 1

2
log |Ri(ρ)| −

1

2σ2
(Yi −Xiβ)

′ Ri(ρ)
−1 (Yi −Xiβ)

= −nk

2
log |2π| − nk

2
log(σ2)− n

2
log |Ri(ρ)| −

1

2σ2

n∑
i=1

(Yi −Xiβ)
′Ri(ρ)

−1 (Yi −Xiβ) .

Note that here we have used the fact that, for a k × k matrix M and constant c,
|cM | = ck|M |. From this, we can write the score function by differentiating the
expression with respect to σ2. Note the first and third terms above are independent of
σ2, so they differentiate to 0. This gives

Sσ2 =
∂

∂σ2
ℓ(·) = − nk

2σ2
+

1

2σ4

n∑
i=1

(Yi −Xiβ)
′Ri(ρ)

−1 (Yi −Xiβ) .

Then by setting Sσ2 = 0 and isolating for σ̂2 we get

σ̂2 =
1

nk

n∑
i=1

(Yi −Xiβ)
′Ri(ρ)

−1 (Yi −Xiβ) .

3. (2 Marks Total) Using the expression for the log-likelihood derived in the lecture, we
get that

ℓp(ρ) = −nk

2
log |2π|−nk

2
log(σ̂2)−n

2
log |Ri(ρ)|−

1

2σ̂2

n∑
i=1

(
Yi −Xiβ̂

)′
Ri(ρ)

−1
(
Yi −Xiβ̂

)
.

4. (3 Marks Total) Consider that an independence correlation assumption, with constant

variance, takes Σi = σ2I. In (1) we showed that β̂ does not depend on σ2, and so
taking Ri(ρ) = I we get

β̂ =

(
n∑

i=1

X ′
iXi

)−1 n∑
i=1

X ′
iYi.

This is exactly the OLS model estimators.

You could also have argued on the basis of properties of the multivariate normal dis-
tribution. If correlation is zero between two components of a multivariate normal
distribution, they are independent: as a result, the data becomes IID (by assumption),
and can be fit through a standard OLS regression.
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5. (4 Marks Total) If the data are balanced and equally spaced, we have that |tij−ti,j+1| =
d for some constant d. This can be expanded to conclude that |tij − tiℓ| = d|j − ℓ|.
Then, considering the exponential correlation structure we see

corr(Yij, Yiℓ) = exp(−ρ|tij − tiℓ|)
= exp(−ρd|j − ℓ|)
= ρ|j−ℓ|

∗ ,

where ρ∗ = exp(−ρd). This is a first-order auto regressive assumption.
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