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Regression Models for Survival Analysis

When considering several distributions that are commonly used for time-to-event data, we
saw that log transformations often lead to location-scale family distributions. We saw that,
for a continuous random variable T , we could often write

Y = log T = µ+ σW,

where W was a mean-zero, unit-variance error distribution, and µ represented the mean
of the transformed variable. Depending on the distribution imposed on T , we would see
different error distributions.

A good motivating example is taking T to be log-normal. This means that Y = log T ∼
N(µ, σ2), and be extension in this case we would have W ∼ N(0, 1). For a specific observa-
tion, Ti, we could write this more succinctly as

Yi = log Ti = ηi +Wi,

where Wi ∼ N(0, σ2) and ηi represents the mean of Yi. This framing is reminiscent of a
standard linear regression models, where we may set ηi = x′

iβ, for some parameter vector β,
taking it to be a standard linear predictor. In this sense we have specified a regression model
for the log transform of our time-to-event data that arises naturally from distributions that
are sensible for time-to-event data. This gives rise to accelerated failure time models.

Accelerated Failure Time (AFT) Models

An AFT model is characterized by suggesting that Yi = log Ti = ηi +Wi, where ηi is taken
to be a linear predictor, and Wi are iid according to some mean-zero error distribution, with
constant variance. This represents a class of regression models that naturally arises from our
previous consideration of location-scale families. In the event that data are not censored,
an AFT model could be fit using standard OLS regression techniques. What’s more, while
we motivated the use of these methods partly through a consideration of normal errors
(log-normal survival times), this assumption tends to be appropriate in only very specific
situations.

With any AFT, we can consider transforming back to the original time scale. Doing this,
we see that

log T = η +W

=⇒ T = eηeW

= eηT0,

where T0 = eW . This suggests the motivation for naming the models accelerated failure
time. Covariates in an AFT act multiplicatively on the time. If eη = 0.5, then this is like
saying that the subject ages twice as fast as normal, where if eη = 2 they age half as fast as
normal.
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If we take f0(t), h0(t), and S0(t) to be the density, hazard, and survivor functions for
T0 = eW , then we can work out the implied density, survival, and hazard functions for T . In
particular, by noting that

T0 = e−ηT

∂

∂T
T0 = e−η

=⇒ f(t) == f0(e
−ηt)e−η

S(t) = S0(e
−ηt)

h(t) = h0(e
−ηt)e−η.

This becomes quite a useful setup, particular because of its direct relation to regression
setups, and the interpretability of the regression parameters. Thinking of covariates as
scaling the survival time from some baseline time is a fairly useful formulation in terms of
scientific inquiry. While AFT models are, I think, a fairly intuitive approach to survival
analysis, they are not nearly as common as the use of proportional hazards models.

Proportional Hazards (PH) Models

A PH model treats the hazard as the key quantity to model. In particular, we state that for
a particular individual i, the hazard for this individual is given by

hi(t) = h0(t) exp(x
′
iβ).

Here h0(t) is a baseline hazard, equal to the hazard for an individual with xi = 0, and note
that xi will not contain an intercept in this framing (if it did the term would get absorbed
into the baseline). In this sense, instead of covariates multiplying or scaling the time, they
multiply or scale the hazard itself.

If we take two individuals who are identical except for covariate j, then we can consider
their hazard ratio, under the assumption of a proportional hazards model.

hi(t|xij = x+ 1)

hi′(t|xi′j = x)
=

h0(t) exp(x
′
iβ)

h0(t) exp(x′
i′β)

= exp(βj).

Generally, any relevant distribution can be selected for the baseline hazard function; most
commonly this will be either an exponential, Weibull, or log-logistic hazard. Once this
has been specified, we have a completely parametric model that can be fit using standard
likelihood theory (under assumptions of independent and uninformative censoring). Recall

L ∝
n∏

i=1

hi(ti)
δiS(ti) =⇒ ℓ =

n∑
i=1

{δi log hi(ti) + logS(ti)}

=
n∑

i=1

{
δi log hi(ti) + log

(
exp

[
−
∫ t

0

h(s)ds

])}
=

n∑
i=1

{
δi log hi(ti)−

∫ ti

0

hi(s)ds

}
.
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From this relation, inserting hi(t) = h0(t) exp(x
′
iβ) provides an expression that can be

optimized numerically for β. These optimization procedures have been programmed in most
common statistical languages, and are widely used. It is worth noting that this imposes
a fairly rigid form on the hazard which may not always be appropriate. It is sometimes
helpful to specify a weakly parametric baseline hazard, to add flexibility to our modelling.
An easy way to do this is to suppose that the baseline hazard is piecewise constant. Recall
that we have seen that an exponential distribution has a constant hazard function, and so to
specify something as a piecewise constant hazard function implies that we specify separate
exponential hazards over different ranges.

Formally, define 0 = a0 < a1 < a2 < · · · < aK−1 < aK = ∞ as cut points on the real line.
Then, we can specify a hazard function of the form

h0(t) = h0k ak−1 ≤ t < ak,

for k = 1, . . . , K. This is unlikely to capture the true hazard function – jumps are not typi-
cally present in real world data – but it presents a very flexible model that can accommodate
some fairly irregular shapes.

Weibull Regression

In general, AFT and PH models are irreconcilable. That is, you can make the assumption
that your data follow the PH assumption, which rules out AFT models, or you can make
the assumption that AFT models capture your data well, which rules out PH models. The
exception to this rule is Weibull regression.

Suppose that you specify h0(t) = κρ−κtκ−1, which is the hazard function for aWeibull(ρ, κ)
distribution, in a PH model. This renders

hi(t) = h0(t) exp(x
′
iβ)

= κρ−κtκ−1 exp(ηi)

= κ
(
ρ exp

{
−ηi
κ

})−κ

tκ−1

= κλ−κtκ−1.

This is the hazard for a Weibull distribution with scale parameter λ = ρ exp
{
−ηi

κ

}
and shape

parameter κ. If we then consider this Weibull distribution as the distribution for Ti|xi, we
can translate this to the corresponding accelerated failure time model. In particular

Yi = log Ti = µi + σWi

= log λ+
1

κ
Wi

= log
(
ρ exp

{
−ηi
κ

})
+

1

κ
Wi

= −ηi
κ
+ log ρ+

1

κ
Wi

= β0 + x′
iβ

∗ +W ∗
i ,
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where W ∗
i absorbs the constant variance term. As a result, if we were to fit this AFT style

model, we would find that β0 = log ρ, and then x′
iβ

∗ will be related to the coefficients from
the PH model (β) through

β = −κβ∗.

Put differently, taking a Weibull distribution in a PH model will have coefficients esti-
mated as β; using a Weibull distribution for an AFT model will produce coefficients estimated
as −κβ.
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