
STAT 437 - Lecture 032 Notes Discrete Time to Event Data

Non-Parametric Discrete Time Estimation

Recall that the discrete-time hazard function, denoted h(k), represents the probability of
an event occurring at a given time k, supposing that it had not yet occurred. That is,
h(k) = P (T = k|T ≥ k). Also note that, in the discrete time setting, we are envisioning
any events that occur in [k, k + 1) to be defined as “happening at k”. If we let dk denote
the number of observed events happening at time k, and we let rk denote the number of
individuals who were at risk at the start of k, then an obvious estimator for the hazard
function is

ĥ(k) =
dk
rk

.

This estimator is quite similar to the approach we took for transition probabilities, and
indeed, can be derived in a similar way.

Note that this estimator implicitly takes into account censoring of individuals. The
reason is that rk+1 ̸= rk − dk, and the estimator recognizes this. Instead, if ck individuals
are censored at time k (meaning they are, for instance, lost to follow-up in the study) then
rk+1 = rk − dk − ck. In this way, the denominator of this estimator accounts for censoring.
Note that we are making a subtle assumption about censoring in this formulation, and it
is one that we will continue to make. We are assuming that at each stage we first observe
whether or not an event occurs, and then we observe whether or not someone is censored.
In this sense, if Ti = Ci, then we actually take Ci = T+

i , some time just after Ti, and count
their event as being recorded. Put differently, you cannot be censored and have an event
observed during the same time interval.

After considering the hazard function, it also makes sense to try to estimate the survivor
function. One estimator that seems reasonable at face value would be to take

Ŝ(k) =
rk
n
,

where n is the total population. This represents the proportion of the total individuals still at
risk at time k, which is a reasonable sounding estimator. The problem is that the individuals
who are no longer at risk (n− rk) may have been those who experience the event (

∑k
j=1 dj),

which is what we care about, or they may have been those that were censored (
∑k

j=1 cj). As
a result, under right censoring this estimator will not be valid for the quantity of interest,
as it will underestimate the true probability of surviving beyond a certain point.

We saw previously that

S(k) = P (T > k) =
k∏

j=1

P (T ≥ j|T > j) =
k∏

j=1

(1− h(j)).

This gives motivation for an estimator for the survivor function, based on the discrete hazard
function. Namely, we can take

Ŝ(k) =
k∏

j=1

(1− ĥ(j)).

This ends up being a valid estimator for the survivor function, even in the event of censoring.
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If we want to take a measure of central tendency, or to provide answers to questions of
the “average” survival time, sample means are not valid under censoring. If right censoring
is present then the sample mean will underestimate the true average survival time, since the
denominator will be inflated. Getting an accurate estimate, without parametric assumptions,
of the expected value under censoring is not possible. Instead, we will typically turn to the
median, which can be estimated from the survivor function. If we take m to be a value such
that Ŝ(m) > 0.5 > Ŝ(m+ 1), then we can take

median = m+

[
Ŝ(m)− 0.5

Ŝ(m)− Ŝ(m+ 1)

]
.

This gives a non-parametric estimator for the measure of central tendency.

Stochastic Processes and Partial Likelihood

Just as we did with transition models, it can be helpful to think of survival data framed as
a stochastic process. We take Y (s) to represent the state of the process at time s, where
Y (s) = 0 means that the event has not yet happened, and Y (s) = 1 means that the event
has occurred. In this sense we are concerned only with the probabilities of moving from 0 to
either 0 or 1 (as 1 acts as an absorbing state). Using this notation we can define the hazard
function as

h(s) = P (Y (s) = 1|Y (s− 1) = 0).

Alongside the event process, we can also define a censoring process. Let Z(s) = 1 if the
individual is still under observation at time s and Z(s) = 0 otherwise. We will also borrow the
history notation from transition models, where HY (s) is the history vector for all occurrences
of Y up to (not including) s, and HZ(s) is the same for Z. Using this notation, we can write
down the likelihood contribution for a single individual as

L =
∞∏
s=1

P
{
Y (s), Z(s)|HY (s),HZ(s)

}
=

∞∏
s=1

P
{
Y (s)|Z(s),HY,Z(s)

}
P
{
Z(s)|HY,Z(s)

}
.

There are two commonly made assumptions that are made to work with this quantity more
easily.

1. Conditionally Independent Censoring: Given the event history, the probability
of an event occurring is independent of the censoring process. That is

P (Y (s)|HY,Z(s), Z(s)) = P (Y (s)|HY (s)).

2. Non-Informative Censoring: The process of censoring provides no information
to (or shares no parameters with) the event process. That is P (Z(s)|HY,Z(s)) and
P (Y (s)|HY (s)) are functionally independent of one another.
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Under these two assumptions, we can simplify these terms and consider only the partial
likelihood for each individual, given by

L =
∞∏
s=1

P (Y (s)|HY (s)).

We used conditionally independent censoring to simplify the first term, and non-informative
censoring to drop the second (since no common parameters are in it). We do not lose any
efficiency by dropping this component if non-informative censoring holds; if the assumption
is violated, this partial likelihood is still valid, it is simply not efficient. If conditionally
independent censoring is violated, however, the expression is no longer valid.

Note that the term P (Y (s)|HY (s)) can be decomposed based on the hazard function. If
the individual observed Y (s) = 1 while Y (s− 1) = 0, then this quantity is captured exactly
by h(s). If Y (s) = 0 while Y (s − 1) = 0, then the contribution will be 1 − h(s). If we fix
their censoring time to be Ci, then we can exploit this to write

L =

Ci∏
s=1

(1− h(s))1−Y (s)h(s)Y (s).

In practice, with a dataset of n individuals, that is going to give

L(θ) =
n∏

i=1

Ci∏
s=1

(1− hi(s; θ))
1−Yi(s)hi(s; θ)

Yi(s),

where the form of the hazard function depends on some unknown parameter θ. Note that this
looks exactly like the likelihood expression for a binomial random variable, with probabilities
given by hi(s; θ) – this is going to be our key to estimating transition survivor distribution
with covariates!

In particular, if we specify a standard logistic regression model (say) for logit(h(s)) then
this model can be fit using standard statistical software. We can take the estimated proba-
bilities as ĥ(s), and use these to build Ŝ(s).

Confidence Intervals for Survivor Function

While the confidence intervals output from the GLM will suffice for the hazard function,
attempting to estimate a confidence interval for Ŝ(t) is more challenging. Doing so relies on
the multivariate delta method, and we typically use a log transformation. We will ignore
the specific details, but in broad strokes:

1. Consider log Ŝ(t), since this will be given by
∑t

j=1 log(1− ĥ(j)).

2. Note that

v̂ar

 log Ŝ(1)
...

log Ŝ(C)

 ≈ Ĝv̂ar(α̂)Ĝ′,
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where v̂ar(α̂) is the estimated covariance matrix from the GLM, and

Ĝ =


−ĥ(1) 0 0 · · · 0

−ĥ(1) −ĥ(2) 0 · · · 0

−ĥ(1) −ĥ(2) −ĥ(3) · · · 0
...

...
...

. . .
...

−ĥ(1) −ĥ(2) −ĥ(3) · · · −ĥ(C)

 .

3. Using this approximation, compute confidence intervals for log Ŝ(t) based on a normal
approximation.

4. Exponentiate the confidence intervals for the survivor function.
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