
Missing Responses in Longitudinal Data



Example: Study on the Financial Crisis

The data that we analyzed. . .

id Age Sex Y2 Y3 Y4 Y5 Y6 Y7 Y8
10 23.92 F 2 2 3 2 3 3 3
17 76.09 M 2 4 2 4 4 4 4
29 54.04 F 1 2 2 4 3 3 1
... ... ... ... ... ... ... ... ... ...

1810 46.77 M 2 2 2 2 2 2 2
1826 24.77 M 2 2 2 2 2 3 1
1837 26.29 F 1 1 1 1 1 1 1



Example: Study on the Financial Crisis

The data that were collected. . .

id Age Sex Y2 Y3 Y4 Y5 Y6 Y7 Y8
2 40.55 F 2 1 3 2 NA 3 NA
10 23.92 F 2 2 3 2 3 3 3
11 44.15 M NA NA NA NA 1 3 NA
... ... ... ... ... ... ... ... ... ...

2439 29.58 M 4 4 NA NA 2 4 NA
2441 54.64 M 2 1 1 1 1 1 NA
2612 30 M 2 1 1 NA NA NA NA



Missing data refer to any observations which we intended to
collect, but which were not recorded in our data file for any reason.
Missing data is a pervasive problem across most domains, but it is

particularly common in longitudinal studies.



Classification of Missing Data Mechanisms



Notation for Missingness

We define an observation indicator Rij .

Rij =
1 Yij is observed,

0 otherwise.

We will assume that we are only concerned with missingness in the
outcomes, and that Rij is observed for all i , j .

We partition the outcome Yi into the observed components Y O
i

and the missing components, Y M
i .
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A Hierarchy of Types of Missing Data
I Data are said to be missing completely at random (MCAR) if

fRi (ri |Y O
i ,Y M

i ,Xi) = fRi (ri |Xi).

I Data may be MCAR if, for instance, missingness is due to a hard drive failure on the
investigators computer.

I Data are said to be missing at random (MAR) if

fRi (ri |Y O
i ,Y M

i ,Xi) = fRi (ri |Y O
i ,Xi).

I Data may be MAR if, for instance, patients who record a severely adverse event
(Yij > C for some known constant C) are removed from the study for all future time
points.

I Otherwise, data are said to be not missing at random (NMAR).

I Data may be NMAR if, for instance, individuals who smoke more (Yij large) are less
likely to continue responding to a smoking questionnaire.
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Patterns of Missingness



Impacts of Missingness



What happens if we ignore missingness?

1. A complete case analysis is valid if data are MCAR. However. . .

I The results will be unnecessarily inefficient and will only be valid if the data are
MCAR.

2. An available data analysis is valid if the data are MCAR, and is more efficient
than a complete case analysis. However. . .

I The data will be inherently unbalanced (meaning only certain techniques can be used)
and the results will only be valid if the data are MCAR.

3. Likelihood based techniques will be valid if the data are MAR or MCAR, so long
as the model is correctly specified.

4. In all other situations, estimators will be biased, and inference will be invalid.
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General Techniques for Handling Missingness



Families of Techniques

1. Complete case analysis, where only the complete responders are included in the
data frame.

2. Available data analysis, where all observations that were made are included in the
data frame.

3. Weighting techniques, where pseudo datasets are created based on weighting the
available information.

4. Imputation techniques, where the missing values are filled-in based on an
underlying model.
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A Note on Handling NMAR Missingness

The four classes of techniques listed above will not be valid for
NMAR data. NMAR data need joint modelling strategies for

f (Yi , Ri).



Weighting Techniques



Dropout as Missingness

One special type of missingness is dropout. In this case, an
individual is observed only until tj , and no times after.

Define Di to be the dropout time

Di = 1 +
K∑

j=1
Rij .



Probability of Inclusion

We can think about estimating the probability of inclusion for any individual, at any
time in the study.

πij = P(Di > j |Di ≥ j , i).

This gives the probability that individual i was still under observation at time j ,
assuming that they made it to at least time j − 1. We can estimate these probabilities

via (e.g.) logistic regression.

Individuals with low πij were unlikely to have been observed. Individuals with high πij
were likely to have been observed.



Balancing the Observed Data

πB = P(Observed|Blue) = 20
40 = 0.5 and πM = P(Observed|Magenta) = 3

60 = 0.05.



Constructing a Pseudo-Population

wB = 1
πB

= 2 and wM = 1
πM

= 20.



Applying this to Longitudinal Data

We can take

πi = P(Di > K ) =
K∏

j=1
πij ,

and correspondingly get
wi = 1

πi
= 1∏K

j=1 πij
.

Then, by running a complete case analysis with these weights, any MCAR or MAR
missingness will be accounted for (assuming the πi are correct).



More Efficiently

We can extend this idea to weighting all available data instead of just the complete
cases.

wij = 1
P(Di > j) =

 j∏
`=1

πi`

−1

.

Then giving each individual’s observations at time j a weight of wij , and running an
available data analysis produces more efficient corrected estimators.



IPW-GEE

Applied specifically to GEE:

I Define Wi = diag(Rijwij | j = 1, . . . ,Ki).
I Find β̂ which solve

N∑
i=1

D′i V−1
i Wi {Yi − µi(β)} = 0.

I We either need Xi fully observed or Vi diagonal.
I Recall that Vi need not be correctly specified. If Xi is not fully observed, take Vi

diagonal.
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Imputation Techniques



Imputation in General

I Using some model, estimate the missing values Y M
i based on the observed

values, Y O
i and variates Xi .

I Compute the parameters of interest as though these imputed values were the
truth.

I If using multiple imputation repeat this procedure m times, averaging the results.
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Imputation in General

I Using some model, estimate the missing values Y M
i based on the observed

values, Y O
i and variates Xi .

I Compute the parameters of interest as though these imputed values were the
truth.

I If using multiple imputation repeat this procedure m times, averaging the results.

Need to choose single or multiple imputation, and the
imputation procedure.



Multiple Imputation

Repeat the imputation process m times, giving β̂(k) for k = 1, . . . ,m. Then

β̂ = 1
m

m∑
k=1

β̂(k),

and we further take

ĉov
(
β̂
)

= 1
m

m∑
k=1

cov
(
β̂(k)

)
+ m + 1

m(m − 1)

m∑
k=1

(
β̂(k) − β̂

) (
β̂(k) − β̂

)′
.



Regression Based Imputation Procedure

1. Fit a GLM g(E [Yi2|Yi1,Xi ]) = Z ′i1γ2.

2. This gives predictions, Ŷi2 = g−1(Z ′i1γ̂2) for all with Ri2 = 0.
3. To ensure that predictions are not deterministic consider sampling from the

distribution with mean Ŷi2.
4. Repeat the process for g(E [Yi3|Yi1,Yi2,Xi ]) = Z ′i2γ3, where the sampled values

replace any missing values.
5. Continue imputing, estimate β̂(1), and then repeat m times.
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2. This gives predictions, Ŷi2 = g−1(Z ′i1γ̂2) for all with Ri2 = 0.

3. To ensure that predictions are not deterministic consider sampling from the
distribution with mean Ŷi2.
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Problem with Underestimating Uncertainty

This procedure outlined underestimates the variability that should be inherent to this
imputation procedure, since Ŷij is estimated not fixed!

Instead of using estimated γ̂j , we draw from the posterior distribution, giving γ̃j , and
otherwise proceed as outlined.



Predictive Mean Matching

Instead of using the regression models to sample predicted values, we can use them
to match individuals who have observations recorded at the relevant time.

1. Generate Ŷij for all i .

2. For each Y M
ij , select the κ nearest individuals with Y O

ij , based on Ŷij .
3. Sample one of these κ, and use the observed Yij as the value.
4. Repeat this process for all j , and then m times.
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1. Generate Ŷij for all i .
2. For each Y M

ij , select the κ nearest individuals with Y O
ij , based on Ŷij .
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Likelihood as Imputation

Any technique that uses maximum likelihood (e.g., GLMEMs or
transition models) will result in valid inference if the data are

MCAR or MAR. In this case

f (Yi |Xi) = f (Y O
i |Xi) = f (Y M

i |Xi).

There are procedures (using Expectation Maximization (EM))
which make the connection between likelihood and imputation

more clear.



Summary

I Missing data is a pervasive issue in longitudinal studies.

I Ignoring missingness causes loss of efficiency in the best case, and can
completely invalidate analyses in the worst.

I Missingness is categorized as MCAR, MAR, or NMAR, based on how it relates to
the observed data.

I Missing is easier to handle when it is monotone (for instance, based on dropout).
I Complete case analyses and available data analyses provide valid inference

only under MCAR.
I Weighting techniques generate pseudo-populations that match the would-be

observed population using estimated probabilities.
I Imputation techniques fill in the missing values based on specific regression

models.
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