Missing Responses in Longitudinal Data

Example: Study on the Financial Crisis

The data that we analyzed...

id	Age	Sex	Y2	Y3	Y4	Y5	Y6	Y7	Y8
10	23.92	F	2	2	3	2	3	3	3
17	76.09	Μ	2	4	2	4	4	4	4
29	54.04	F	1	2	2	4	3	3	1
÷	÷	÷	÷	÷	÷	÷	÷	÷	÷
1810	46.77	М	2	2	2	2	2	2	2
1826	24.77	М	2	2	2	2	2	3	1
1837	26.29	F	1	1	1	1	1	1	1

Example: Study on the Financial Crisis

The data that were collected...

Age	Sex	Y2	Y3	Y4	Y5	Y6	Y7	Y8
40.55	F	2	1	3	2	NA	3	NA
23.92	F	2	2	3	2	3	3	3
44.15	Μ	NA	NA	NA	NA	1	3	NA
÷	÷	÷	÷	÷	÷	÷	÷	÷
29.58	Μ	4	4	NA	NA	2	4	NA
54.64	Μ	2	1	1	1	1	1	NA
30	Μ	2	1	1	NA	NA	NA	NA
	Age 40.55 23.92 44.15 : 29.58 54.64 30	Age Sex 40.55 F 23.92 F 44.15 M 29.58 M 54.64 M 30 M	AgeSexY240.55F223.92F244.15MNA29.58M454.64M230M2	AgeSexY2Y340.55F2123.92F2244.15MNANA29.58M4454.64M2130M21	AgeSexY2Y3Y440.55F21323.92F22344.15MNANANA29.58M44NA54.64M21130M211	AgeSexY2Y3Y4Y540.55F213223.92F223244.15MNANANANA29.58M44NANA54.64M21130M211NA	AgeSexY2Y3Y4Y5Y640.55F2132NA23.92F2232344.15MNANANANA129.58M44NANA254.64M21111	AgeSexY2Y3Y4Y5Y6Y740.55F2132NA323.92F22323344.15MNANANANA1329.58M4ANANA2454.64M2111130M21NANANANA

Missing data refer to any observations which we *intended* to collect, but which were not recorded in our data file for **any reason**.

Missing data is a pervasive problem across most domains, but it is *particularly* common in longitudinal studies.

Classification of Missing Data Mechanisms

Notation for Missingness

We define an **observation indicator** R_{ij} .

$${\sf R}_{ij} = egin{cases} 1 & Y_{ij} ext{ is observed}, \ 0 & ext{otherwise}. \end{cases}$$

We will assume that we are only concerned with missingness in the **outcomes**, and that R_{ij} is observed for all i, j.

Notation for Missingness

We define an **observation indicator** R_{ij} .

$$\mathcal{R}_{ij} = egin{cases} 1 & Y_{ij} ext{ is observed}, \ 0 & ext{otherwise}. \end{cases}$$

We will assume that we are only concerned with missingness in the **outcomes**, and that R_{ij} is observed for all i, j.

We partition the **outcome** Y_i into the **observed components** Y_i^O and the **missing components**, Y_i^M .

Data are said to be missing completely at random (MCAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|X_i).$$

> Data are said to be missing completely at random (MCAR) if

$$f_{\mathcal{R}_i}(r_i|Y_i^{\mathsf{O}},Y_i^{\mathsf{M}},X_i)=f_{\mathcal{R}_i}(r_i|X_i).$$

Data may be MCAR if, for instance, missingness is due to a hard drive failure on the investigators computer.

Data are said to be missing completely at random (MCAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|X_i).$$

Data may be MCAR if, for instance, missingness is due to a hard drive failure on the investigators computer.

Data are said to be missing at random (MAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|Y_i^{O}, X_i).$$

> Data are said to be missing completely at random (MCAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|X_i).$$

Data may be MCAR if, for instance, missingness is due to a hard drive failure on the investigators computer.

Data are said to be missing at random (MAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|Y_i^{O}, X_i).$$

Data may be MAR if, for instance, patients who record a severely adverse event (Y_{ij} > C for some known constant C) are removed from the study for all future time points.

> Data are said to be missing completely at random (MCAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|X_i).$$

Data may be MCAR if, for instance, missingness is due to a hard drive failure on the investigators computer.

Data are said to be missing at random (MAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|Y_i^{O}, X_i).$$

Data may be MAR if, for instance, patients who record a severely adverse event (Y_{ij} > C for some known constant C) are removed from the study for all future time points.

Otherwise, data are said to be not missing at random (NMAR).

> Data are said to be missing completely at random (MCAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|X_i).$$

Data may be MCAR if, for instance, missingness is due to a hard drive failure on the investigators computer.

Data are said to be missing at random (MAR) if

$$f_{R_i}(r_i|Y_i^{O}, Y_i^{M}, X_i) = f_{R_i}(r_i|Y_i^{O}, X_i).$$

Data may be MAR if, for instance, patients who record a severely adverse event (Y_{ij} > C for some known constant C) are removed from the study for all future time points.

- Otherwise, data are said to be not missing at random (NMAR).
 - Data may be NMAR if, for instance, individuals who smoke more (Y_{ij} large) are less likely to continue responding to a smoking questionnaire.

Patterns of Missingness

Impacts of Missingness

1. A complete case analysis is valid if data are MCAR. However...

- 1. A complete case analysis is valid if data are MCAR. However...
 - The results will be unnecessarily inefficient and will only be valid if the data are MCAR.

- 1. A complete case analysis is valid if data are MCAR. However...
 - The results will be unnecessarily inefficient and will only be valid if the data are MCAR.
- 2. An **available data** analysis is valid if the data are MCAR, and is more efficient than a complete case analysis. However...

- 1. A complete case analysis is valid if data are MCAR. However...
 - The results will be unnecessarily inefficient and will only be valid if the data are MCAR.
- 2. An **available data** analysis is valid if the data are MCAR, and is more efficient than a complete case analysis. However...
 - The data will be inherently unbalanced (meaning only certain techniques can be used) and the results will only be valid if the data are MCAR.

- 1. A complete case analysis is valid if data are MCAR. However...
 - The results will be unnecessarily inefficient and will only be valid if the data are MCAR.
- 2. An **available data** analysis is valid if the data are MCAR, and is more efficient than a complete case analysis. However...
 - The data will be inherently unbalanced (meaning only certain techniques can be used) and the results will only be valid if the data are MCAR.
- 3. Likelihood based techniques will be valid if the data are MAR or MCAR, so long as the model is correctly specified.

- 1. A complete case analysis is valid if data are MCAR. However...
 - The results will be unnecessarily inefficient and will only be valid if the data are MCAR.
- 2. An **available data** analysis is valid if the data are MCAR, and is more efficient than a complete case analysis. However...
 - The data will be inherently unbalanced (meaning only certain techniques can be used) and the results will only be valid if the data are MCAR.
- 3. Likelihood based techniques will be valid if the data are MAR or MCAR, so long as the model is correctly specified.
- 4. In all other situations, estimators will be **biased**, and inference will be **invalid**.

General Techniques for Handling Missingness

1. **Complete case analysis**, where only the *complete* responders are included in the data frame.

- 1. **Complete case analysis**, where only the *complete* responders are included in the data frame.
- 2. **Available data analysis**, where all observations that were made are included in the data frame.

- 1. **Complete case analysis**, where only the *complete* responders are included in the data frame.
- 2. Available data analysis, where all observations that were made are included in the data frame.
- 3. Weighting techniques, where pseudo datasets are created based on weighting the available information.

- 1. **Complete case analysis**, where only the *complete* responders are included in the data frame.
- 2. Available data analysis, where all observations that were made are included in the data frame.
- 3. Weighting techniques, where pseudo datasets are created based on weighting the available information.
- 4. **Imputation techniques**, where the missing values are filled-in based on an underlying model.

A Note on Handling NMAR Missingness

The four classes of techniques listed above will **not** be valid for NMAR data. NMAR data **need** joint modelling strategies for

 $f(Y_i, R_i).$

Weighting Techniques

One special type of missingness is **dropout**. In this case, an individual is observed only until t_j , and no times after.

Define D_i to be the **dropout time**

$$D_i = 1 + \sum_{j=1}^{K} R_{ij}.$$

Probability of Inclusion

We can think about estimating the **probability of inclusion** for any individual, at any time in the study.

 $\pi_{ij} = P(D_i > j | D_i \ge j, i).$

This gives the probability that individual i was still under observation at time j, assuming that they made it to at least time j - 1. We can estimate these probabilities via (e.g.) logistic regression.

Individuals with low π_{ij} were unlikely to have been observed. Individuals with high π_{ij} were likely to have been observed.

Balancing the Observed Data

True Population

Observed Data

Constructing a Pseudo-Population

$$w_B = \frac{1}{\pi_B} = 2$$
 and $w_M = \frac{1}{\pi_M} = 20.$

Observed Data

Pseudo Population

Applying this to Longitudinal Data

We can take

$$\pi_i = P(D_i > K) = \prod_{j=1}^K \pi_{ij},$$

and correspondingly get

$$w_i = \frac{1}{\pi_i} = \frac{1}{\prod_{j=1}^K \pi_{ij}}.$$

Then, by running a **complete case analysis** with these weights, any MCAR or MAR missingness will be accounted for (assuming the π_i are correct).

More Efficiently

We can extend this idea to weighting **all available data** instead of just the complete cases.

$$w_{ij}=rac{1}{P(D_i>j)}=\left[\prod_{\ell=1}^j\pi_{i\ell}
ight]^{-1}.$$

Then giving each individual's observations at time j a weight of w_{ij} , and running an **available data analysis** produces more efficient corrected estimators.

IPW-GEE

Applied specifically to GEE:

$$\sum_{i=1}^{N} D'_i V_i^{-1} W_i \{ Y_i - \mu_i(\beta) \} = 0.$$

IPW-GEE

Applied specifically to GEE:

• We either need X_i fully observed or V_i diagonal.

IPW-GEE

Applied specifically to GEE:

$$\sum_{i=1} D'_i V_i^{-1} W_i \{ Y_i - \mu_i(\beta) \} = 0.$$

- We either need X_i fully observed or V_i diagonal.
 - Recall that V_i need not be correctly specified. If X_i is not fully observed, take V_i diagonal.

Imputation Techniques

Using some model, estimate the missing values Y^M_i based on the observed values, Y^O_i and variates X_i.

- Using some model, estimate the missing values Y^M_i based on the observed values, Y^O_i and variates X_i.
- Compute the parameters of interest as though these imputed values were the truth.

- Using some model, estimate the missing values Y^M_i based on the observed values, Y^O_i and variates X_i.
- **Compute the parameters** of interest as though these imputed values were the truth.
- ▶ If using multiple imputation repeat this procedure *m* times, averaging the results.

Imputation in General

- Using some model, estimate the missing values Y^M_i based on the observed values, Y^O_i and variates X_i.
- Compute the parameters of interest as though these imputed values were the truth.
- ▶ If using multiple imputation repeat this procedure *m* times, averaging the results.

Need to choose **single** or **multiple** imputation, and the **imputation procedure**.

Multiple Imputation

Repeat the imputation process *m* times, giving $\widehat{\beta}^{(k)}$ for $k = 1, \ldots, m$. Then

$$\widehat{\beta} = \frac{1}{m} \sum_{k=1}^{m} \widehat{\beta}^{(k)},$$

and we further take

$$\widehat{\operatorname{cov}}\left(\widehat{\beta}\right) = \frac{1}{m} \sum_{k=1}^{m} \operatorname{cov}\left(\widehat{\beta}^{(k)}\right) + \frac{m+1}{m(m-1)} \sum_{k=1}^{m} \left(\widehat{\beta}^{(k)} - \widehat{\beta}\right) \left(\widehat{\beta}^{(k)} - \widehat{\beta}\right)'.$$

1. Fit a GLM $g(E[Y_{i2}|Y_{i1}, X_i]) = Z'_{i1}\gamma_2$.

- 1. Fit a GLM $g(E[Y_{i2}|Y_{i1}, X_i]) = Z'_{i1}\gamma_2$.
- 2. This gives predictions, $\widehat{Y}_{i2} = g^{-1}(Z'_{i1}\widehat{\gamma}_2)$ for all with $R_{i2} = 0$.

- 1. Fit a GLM $g(E[Y_{i2}|Y_{i1}, X_i]) = Z'_{i1}\gamma_2$.
- 2. This gives **predictions**, $\widehat{Y}_{i2} = g^{-1}(Z'_{i1}\widehat{\gamma}_2)$ for all with $R_{i2} = 0$.
- 3. To ensure that predictions are **not deterministic** consider **sampling from** the distribution with mean \hat{Y}_{i2} .

- 1. Fit a GLM $g(E[Y_{i2}|Y_{i1},X_i]) = Z'_{i1}\gamma_2$.
- 2. This gives **predictions**, $\widehat{Y}_{i2} = g^{-1}(Z'_{i1}\widehat{\gamma}_2)$ for all with $R_{i2} = 0$.
- 3. To ensure that predictions are **not deterministic** consider **sampling from** the distribution with mean \hat{Y}_{i2} .
- 4. Repeat the process for $g(E[Y_{i3}|Y_{i1}, Y_{i2}, X_i]) = Z'_{i2}\gamma_3$, where the sampled values replace any missing values.

- 1. Fit a GLM $g(E[Y_{i2}|Y_{i1},X_i]) = Z'_{i1}\gamma_2$.
- 2. This gives **predictions**, $\widehat{Y}_{i2} = g^{-1}(Z'_{i1}\widehat{\gamma}_2)$ for all with $R_{i2} = 0$.
- 3. To ensure that predictions are **not deterministic** consider **sampling from** the distribution with mean \hat{Y}_{i2} .
- 4. Repeat the process for $g(E[Y_{i3}|Y_{i1}, Y_{i2}, X_i]) = Z'_{i2}\gamma_3$, where the sampled values replace any missing values.
- 5. Continue imputing, estimate $\hat{\beta}^{(1)}$, and then repeat *m* times.

Problem with Underestimating Uncertainty

This procedure outlined **underestimates** the variability that should be inherent to this imputation procedure, since \hat{Y}_{ij} is estimated not fixed!

Instead of using estimated $\hat{\gamma}_j$, we draw from the posterior distribution, giving $\tilde{\gamma}_j$, and otherwise proceed as outlined.

1. Generate \widehat{Y}_{ij} for all *i*.

- 1. Generate \widehat{Y}_{ij} for all *i*.
- 2. For each Y_{ij}^{M} , select the κ nearest individuals with Y_{ij}^{O} , based on \hat{Y}_{ij} .

- 1. Generate \widehat{Y}_{ij} for all *i*.
- 2. For each Y_{ii}^{M} , select the κ nearest individuals with Y_{ii}^{O} , based on \hat{Y}_{ij} .
- 3. Sample one of these κ , and use the observed Y_{ij} as the value.

- 1. Generate \widehat{Y}_{ij} for all *i*.
- 2. For each Y_{ii}^{M} , select the κ nearest individuals with Y_{ii}^{O} , based on \hat{Y}_{ij} .
- 3. Sample one of these κ , and use the observed Y_{ij} as the value.
- 4. Repeat this process for all j, and then m times.

Any technique that uses **maximum likelihood** (e.g., GLMEMs or transition models) will result in valid inference if the data are **MCAR** or **MAR**. In this case

$$f(Y_i|X_i) = f(Y_i^{\mathsf{O}}|X_i) = f(Y_i^{\mathsf{M}}|X_i).$$

There are procedures (using Expectation Maximization (EM)) which make the connection between **likelihood** and **imputation** more clear.

• Missing data is a **pervasive issue** in longitudinal studies.

- Missing data is a **pervasive issue** in longitudinal studies.
- Ignoring missingness causes loss of efficiency in the best case, and can completely invalidate analyses in the worst.

- Missing data is a pervasive issue in longitudinal studies.
- Ignoring missingness causes loss of efficiency in the best case, and can completely invalidate analyses in the worst.
- Missingness is categorized as MCAR, MAR, or NMAR, based on how it relates to the observed data.

- Missing data is a pervasive issue in longitudinal studies.
- Ignoring missingness causes loss of efficiency in the best case, and can completely invalidate analyses in the worst.
- Missingness is categorized as MCAR, MAR, or NMAR, based on how it relates to the observed data.
- Missing is easier to handle when it is **monotone** (for instance, based on **dropout**).

- Missing data is a pervasive issue in longitudinal studies.
- Ignoring missingness causes loss of efficiency in the best case, and can completely invalidate analyses in the worst.
- Missingness is categorized as MCAR, MAR, or NMAR, based on how it relates to the observed data.
- Missing is easier to handle when it is **monotone** (for instance, based on **dropout**).
- Complete case analyses and available data analyses provide valid inference only under MCAR.

- Missing data is a pervasive issue in longitudinal studies.
- Ignoring missingness causes loss of efficiency in the best case, and can completely invalidate analyses in the worst.
- Missingness is categorized as MCAR, MAR, or NMAR, based on how it relates to the observed data.
- Missing is easier to handle when it is **monotone** (for instance, based on **dropout**).
- Complete case analyses and available data analyses provide valid inference only under MCAR.
- Weighting techniques generate pseudo-populations that match the would-be observed population using estimated probabilities.

- Missing data is a pervasive issue in longitudinal studies.
- Ignoring missingness causes loss of efficiency in the best case, and can completely invalidate analyses in the worst.
- Missingness is categorized as MCAR, MAR, or NMAR, based on how it relates to the observed data.
- Missing is easier to handle when it is **monotone** (for instance, based on **dropout**).
- Complete case analyses and available data analyses provide valid inference only under MCAR.
- Weighting techniques generate pseudo-populations that match the would-be observed population using estimated probabilities.
- Imputation techniques fill in the missing values based on specific regression models.