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Handling Missing Data in Longitudinal Studies

Missing data is a pervasive issue, particularly in longitudinal studies. It can be quite chal-
lenging maintain individuals in studies over time, some individuals may skip certain follow-up
appointments, and so on. In the second half of this course we will study survival analysis,
which handles a particular kind of missingness (dropout, which occurs when a subject is
lost to follow-up for the remainder of the study), for now we will focus on more general
mechanisms. We are considering missingness only in the outcome, which is to say that for
some individuals we do not have a measure Yij for some time points.

Notation and Categorization of Missing Mechanisms

In addition to the standard notation that we have been using, we let Rij represent the
observation indicator for individual i at tj. That is, if we observe Yij then Rij = 1 and
Rij = 0 otherwise. Moreover, we can partition Yi into Y O

i for the observations which are
observed, and Y M

i for the observations which are missing. We categorize three distinct classes
of missingness, based on the conditional distributions surrounding these quantities:

1. Data are said to be Missing Completely at Random (MCAR) if

fRi
(ri|Y O

i , Y M
i , Xi) = fRi

(ri|Xi).

2. Data are said to be Missing at Random (MAR) if

fRi
(ri|Y O

i , Y M
i , Xi) = fRi

(ri|Y O
i , Xi).

3. Otherwise, data are said to be Not Missing at Random (NMAR).

Put differently: data are MCAR when observations occur independently of the values of
any outcomes. Data are MAR when observations occur independently of any unobserved
values for the outcomes. Data are NMAR when there is a dependence between whether an
observation is made and the unobserved values of that observation. While the definitions
for these models occur based on the conditional distribution of Ri, it can be shown (e.g.
consider Rubin and Little (2019) Chapter 6) that, if the data are MAR or MCAR (which is
a specific type of MAR), we need only focus on f(Yi|Xi).

In addition to the mechanism that causes the missingness, we also discuss patterns of
missingness in data. Data are said to follow a monotone missing pattern if they can be
ordered in such a way such that, once one observation is missing for an individual, all future
observations are missing. Dropout, where a patient leaves the study and never returns is one
such way that data can exhibit monotone missingness. For examples see the illustration in
Figure 1. Resolving issues with missingness, regardless of the underlying mechaism is more
straightforward when the data follows a monotone missing pattern. Moreover, because of
common causes for missingness, data often do follow a monotone pattern (or are very close
to following a monotone pattern).
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Figure 1: Missing patterns where observed values for 5 times points are shown in blue and
missing values are shown in red. This compares (left) a drop out missing pattern, to a
(center) monotone non-drop out pattern, to a (right) non-monotone pattern. The second
row shows the transformed dataframes (where applicable) demonstrating the monotonicity
(or lack thereof) for each of the provided datasets. The outlined row in the transformed data
frames illustrate the issues with the non-monotone pattern.
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Impacts of Missingness

When missingness occurs completely at random, it can actually be ignored in our analysis.
That is because f(Yi|Xi) = f(Y O

i |Xi), and so modelling just the observed values provides
the correct distribution of interest. This can either be accomplished by running a complete
case analysis, which occurs simply by dropping any responses which do not have all values
recorded or (for some methods) an available data method. Available data methods use all
available data, which may include only partial realizations for some individuals.

Even when the mechanism is MCAR, there are still issues that arise. First, conducting a
complete case analysis (potentially) removes plenty of data that is avaialble, which renders
the estimators far less efficient than they otherwise would be. Second, if available data are
kept, then missing data forces every dataset to be unbalanced. As a result, any methods
which rely on balanced data cannot be estimated using just the available data, even when
they are MCAR. Third, there is no way of testing whether or not data are MCAR. As a
result, it is a strong assumption, and one which likely is not permissible in practice.

If the data are MAR rather than MCAR, it is no longer the case that a complete case
analysis is valid. This is because responders and non-responders may differ from one another,
they just do so in a way that is predictable from the observed data. However, exploiting
the aforementioned result, it can be shown that any techniques which rely on a correctly
specified model of f(Yi|Xi) will produce valid estimators under MAR missingness. In
particular, likelihood-based techniques will provide valid estimates if the missing data are
MAR, while techniques like GEE will not. Techniques which do not specify this complete
distribution, or applying techniques when these are misspecified, will generally result in
biased estimates and invalid inference.

Finally, when data are NMAR, even techniques which correctly model f(Yi|Xi) are in-
valid. In this case we need to specifically model the missing mechanism, f(Ri|Y O

i , Y M
i , Xi)

and incorporate such a model into our analysis in order for the analysis to be valid.

Techniques for Addressing Missingness

There are several techniques for correcting for the impacts of missingness in observed data.
In fact, it is a topic of research that is not only rapidly expanding, but which would take
a full length course to adequately introduce. Still, becoming familiar enough with some
techniques will greatly improve your capacity to accurately analyze real-world data.

1. Complete Case Analysis: A complete case analysis occurs when all observations
that have any missingness are simply excldued from the analysis. This leaves us with
a subset of only those who were completely observed (to so called “complete cases”)
and then any technique can be applied on these data. As a general rule, complete case
analyses are valid when the data are MCAR, however, as previously discussed there
are concerns regarding the efficiency of such estimators. In general, a complete case
analysis should be avoided except for in two situations: (1) if you are trying to quickly
test out an analysis, and plan on doing a more suitable correction after, but want to
understand performance or general trends, and (2) if the missingness is an incredibly
small percentage of the full data and you know that it is MCAR.
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2. Available Data Analysis: An available data analysis overcomes some of the issues
with the complete case analysis by including all outcomes that were observed (and
ignoring those that were not). This will render the data unbalanced, and as such
will restrict available to only those which accommodate unbalanced data. In general,
in order for an available data analysis to be valid, the specified models (for means
and covariances, for instance) must be correct for both the missing and non-missing
outcomes (conditional on Xi), which is only guaranteed to be the case for MCAR data.
If you have data which you know to be MCAR, running an available data analysis is a
good way to overcome the efficiency concerns with a complete case analysis, without
needing to perform additional modelling. Note though that the assumption of MCAR
data is strong and untestable!

3. Weighting Techniques: If the missingness depends on specific traits (both observable
and unobservable) of each individual, then this means that some people will have a
higher tendency to be included (or to have their observations made) as compared to
others. The idea with weighting techniques (which represent a whole class of different
methods) is to compute the probability that a particular individual (who was observed)
was included in the sample. Then, we can construct a pseudo-population by weighting
each observed individual to “count for” multiple people in the population who we
could have observed, but did not. If one individuals inclusion probability was 0.5,
then we can think of this as saying: “In the full population there are two people who
would have responded as this individual did, but one of them was unobserved due to
missingness. As a result, we will count the observed individual for 1

0.5
= 2 individuals

in our pseudo-population, to account for them and the individual like them, but who
is missing.”

4. Imputation Techniques: Imputation is a family of techniques which is based on
the idea of filling in all of the missing values in the dataset, so that missingness is
not a concern. The key decision for imputation techniques is the method used to
determine how to fill-in the values. The strength of imputation relies entirely on the
strength of the method used to impute the missing values. There are some procedures
which are “ad-hoc”, and correspondingly do not perform particularly well in general.
These would include, for instance mean imputation or last observation carried forward,
and are generally advised against. Instead, imputation techniques should be based on
specific (conditional) distributions that are posed, and fit to the data, and then sampled
from; the techniques will be valid whenever the posited model is valid, and this acts
as a method of making explicit assumptions about what drives the missingness. Note,
likelihood methods which model f(Yi|Xi) can be viewed as a type of imputation, which
underscores why these methods are valid with MAR data. An imputation technique
is deemed either single imputation where one dataset is imputed and analyzed or
multiple imputation where (as it sounds) multiple imputed datasets are analyzed.
Multiple imputation is preferable as it better accounts for the sampling variability in
the imputation procedure.

In the following sections we will explore in more detail both weighting techniques and
imputation techniques. Becoming familiar and comfortable with these methods will assist
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you not only in this course, but in your future statistics courses, as (generally) these methods
are applicable outside of the setting of longitudinal data.

Weighting Methods

Consider the special case of dropout to illustrate the idea of weighting methods. We can
define a “dropout indicator”, which represents the observation time that the individual drops
out of the study and does not return. We denote this Di = 1 +

∑K
j=1 Rij. A fully observed

individual will thus has Di = K + 1. Now, consider the probability that an individual who
made it to at least stage j, is observed past stage j. That is, define

πij = P (Di > j|Di ≥ j).

These probabilities could be estimated, for instance, through the use of sequential logistic
regressions, and could take into account all observed values of {Yi, Xi, Ri} up to time j.
Once we have these probabilities, there are two general techniques for incorporating this
information into an analysis: we can either perform a weighted complete case analysis, or a
weighted available data analysis.

Weighted Complete Case

If we consider just the full responders, then the probability that any one of them was included
in the sample is given by

πi = P (Di > K) =
K∏
j=1

P (Di > j|Di ≥ j) =
K∏
j=1

πij.

Individuals who have a large πi are likely to have been observed and those with a small πi

are unlikely to have been observed. As a result, if we consider just the complete cases, those
with a large πi are likely to be well represented within the sample (compared to the overall
population) whereas those with a small πi are likely to be underrepresented (compared to the
overall population). If we consider two individuals, πi = 0.95 and πi′ = 0.05 then it is clear
that for people like individual i we have a good sample of observed values in our complete
cases. If there were 100 people in the full sample who were like individual i, we would expect
to have 95 of them in the complete sample, only missing values for 5 of them. For individual
i′, however, this is not the case: if there were 100 individuals like this person to begin, we
would only expect 5 in our complete case, missing 95 of them! If we want to re-balance our
sample, then counting individual i for wi =

1
0.95

≈ 1.05 individuals will mean that the 95
observed individuals (each counting at wi) will represent 100 people in the weighted sample.
Similarly, if we take wi′ =

1
0.05

= 20, then the 5 individuals each weighted at wi′ will also
represent 100 people. Based on this logic, we can then conduct a complete case analysis
where each individual is weighted using

wi =
1

πi

,

and so long as the data are MAR and our models are correctly specified, this analysis will
be valid.
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Weighted Available Data

While the complete case analysis presented above is valid under the specified assumptions,
it does not make efficient use of the available data. Just like with a complete case analysis
under the MCAR assumption, a complete case weighted analysis with MAR data will be
less efficient than a similar analysis which uses all of the observed data. Instead of using a
single weight for each individual, we can think of computing the weights for each individual
at each time point, j. That is,

wij =
1

P (Di > j)
=

[
j∏

ℓ=1

πiℓ

]−1

.

Then these weights can be incorporated into an analysis which exploits all available data,
where an individuals observations at time j are given weight based on Rijwij. Note that,
depending on the specific modelling approach for estimating πij it may be the case that
some weights estimated are incredibly large (when πij ≈ 0). These weights may have undue
influence on the estimation procedure, leading to a loss of precision. When using these
weighting schemes it is worth considering the distribution of weights, in full, to ensure that
there do not appear to be any which have too strong of an influence on the outcome. If
so, other techniques to account for the missingness (or alternative stabilized weights can be
employed).

This type of weighting is commonly employed for the GEE approach. Recall that, in
general, the GEE estimators for β solve

n∑
i=1

D′
iV

−1
i {Yi − µi(β)} = 0.

An available data analysis for GEE then would include

n∑
i=1

DO′

i V O−1
i

{
Y O
i − µO

i (β)
}
= 0,

where the observed indicators on each of the corresponding components represents inclusion
of only the values observed from each individual. A weighted analysis of GEE, often called
IPW-GEE (for inverse probability weighted GEE) can proceed by defining a weight matrix
for each individual, Wi = diag(Rijwij | j = 1, . . . , K). Then, if this weight Matrix is correctly
specified, the IPW-GEE estimators can be obtained by solving

n∑
i=1

D′
iV

−1
i Wi {Yi − µi(β)} = 0.

It is worth noting that, if Vi is not a diagonal matrix (that is, we do not assume working
independence) then we must observed Xij for all time points, even when we do not observe
the corresponding Yij, in order for these estimating equations to be computable. Note
that this is not as strong of an assumption as it may first seem. In an analysis which
focuses predominantly on baseline factors, it may very well be the case that Xi is completely

Page 6 out of 10



STAT 437 - Lecture 025 (Supplementary) Notes Missing Data

observed at all time points, even when the outcome is not. Second, recall that Vi need not
be correctly specified for consistent estimation of β. The correct specification of the variance
matrix simply improves efficiency. As a result, if there are concerns with the observed values
for Xi, then we can simply employ a working independence assumption, sacrificing efficiency
for valid estimation. While Vi need not be correctly specified, Wi must be.

Imputation Techniques

The process of imputation, whereby we fill in values that are otherwise missing from the
dataset, is useful particularly when specifying a model for the missingness (based on the
observed data as well as any available auxiliary information) is possible. In contrast to
weighting techniques, imputation techniques directly model the conditional distributions for
the data, and use this to fill-in information. In general there are two choices to make when
employing imputation: (1) single versus multiple imputation, and (2) the model used to
impute from. It is always preferable to use multiple imputation, whenever it is possible, and
we will focus on it. The idea with multiple imputation is to simply repeat the imputation
process many times, and combine the resulting estimates; failing to do so will have the effect
of underestimating the variability in the standard errors (which will produce confidence
intervals which are too small). For multiple imputation, we think of doing the imputation

process m times, which results in m estimators for β̂(k), k = 1, . . . ,m, We can then define

β̂ =
1

m

m∑
k=1

β̂(k),

and we further take

ĉov
(
β̂
)
=

1

m

m∑
k=1

cov
(
β̂(k)

)
+

m+ 1

m(m− 1)

m∑
k=1

(
β̂(k) − β̂

)(
β̂(k) − β̂

)′
.

Here, the covariance of each β̂(k) is estimated based on the technique used to estimate β.
This averaging effect will produce valid estimators, and we can see that as m increases, the
additional variance in our estimator tends to 0.

Knowing how to combine the multiple estimators based on imputed data, we have to
make a decision regarding how to actually impute the values. There are several different
methods, and what is possible will depend on the pattern of missingness (e.g., whether
or not the missingness is monotone). Suppose that the missingness is monotone (as will
often be the case), and suppose further that this is ordered in such a way that it resembles
dropout. The idea with imputation with these data will be to first impute values at t = 2
using {Yi1, Xi1}. Then, once everyone has an imputed value, we will use {Ŷi2, Xi2, Yi1, Xi1}
to impute values for Yi3. We can continue this through to YiK , using the previously imputed
values as predictors wherever necessary. Conceptually, each of these imputation models can
be based on a suitable GLM for the outcome, say given by

g (E {Yiℓ|Yi1, . . . , Yi,ℓ−1, Xi}) = Z ′
iℓγℓ.
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Note that these models are imputation models not analysis models, and so these are distinct
from the marginal models discussed earlier in the term. In theory these models could be fit
and used to estimate the mean for each individual according to the iterative process above,
however, this presents a problem. Prediction in GLMs is deterministic not random.

Our goal with multiple imputation was to account for added variability by sampling
repeatedly from a set of possible values to give us a robust estimator. If we were to simply
use the imputation model for prediction, this would not allow for different estimates of the
imputed values. Instead, we wish to predict from the distribution, which would involve
sampling from the residuals as well. In a linear regression, this amounts to taking the
estimated mean Z ′

iℓγ̂ℓ and adding onto it a draw from a normally distributed error term,
with variance given by σ̂2

ℓ from the OLS fit. In the event of a binomial outcome, we can
take a draw from a binomial random variable where the probability of success is given by
expit(Z ′

iℓγ̂ℓ). Drawing from the residual distribution produces randomness in our estimates,
and more closely accounts for the uncertainty in our imputation, however, it does not go far
enough. Recall that we are using imputed values as predictors in our models. If the imputed
values were exactly correct, that would lead to consistent estimates of the γ parameters;
however, since these values are not actually observed, we are in fact underestimating the
total variation needed to account for the imputation techniques.

To illustrate this point dramatically, imagine a trial with K = 100, and an imputation
occurring for an individual with only the first observation recorded. At the 100th time
step, the model we are using is based on E[Yi,100|Yi,1, . . . , Yi,99] where for this individual,
{Yi,2, Yi,3, . . . , Yi,99} are all estimated values. The errors that propagate through using these
predictions in place of truly observed values is going to grow very large, where we will be
incredibly uncertain about the estimates at later stages of the analysis.

Instead, we will also add in additional variability by drawing the estimated γ̂ℓ from a
distribution as well. For those of you who have seen Bayesian analysis, we wish to sample
γ̂ℓ from its posterior distribution. For those of your who are unfamiliar with Bayesian
analysis, we can simply think of treating our estimators as being random variables where
the added variation is due (in part) to the fact that we are using imputed values to estimate
them. Then, regression based imputation proceeds by fitting a suitable regression model
at the first step, randomly sampling the estimated regression parameters from a suitable
posterior distribution, and then drawing imputed values from the residual distribution of
the model (based on the predicted mean). These values are then treated as observed and
this sequence repeats. We then repeat the entire analysis several times, and combine the
estimators through the multiple imputation procedure discussed above.

Predictive Mean Matching

As an alternative to the aforementioned procedure, we can use the sequential regression
models in a slightly different way. If we fit the model, and randomly draw the regression
coefficients exactly as above, then we could generate a mean prediction for every observation
in the data (including those that were observed). Then, for each missing value, we consider
the κ closest values to its mean prediction, among the individuals with an observed value.
Here κ is some integer selected in advance. Among these κ individuals, we randomly select
one of them, and use their observed value as the imputed value for the individual. We then
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proceed at the next step. Note that here the predictions being used for matching are based
on the means, and random errors need not be sampled. Just as with regression techniques,
these matches and imputed values are then repeated many times, and combined using the
multiple imputation formula.

There are two primary benefits to predictive mean matching over regression-based im-
putation. First, it is generally more robust to misspecification in the regression models.
Intuitively, this is because we only need the models to tell us which individuals are simi-
lar, rather than predicting their outcomes specifically. Second, because the imputed values
are borrowed from actual observations, it is guaranteed that all values of the outcome are
plausible (which may not be the case with regression values).

Likelihood as an Imputation Method

We have noted that, when data are MAR, likelihood based techniques (e.g., linear mixed
effect models or transition models) can accommodate missingness. This assumes that the
likelihood is correctly specified, but that assumption is already required for the validity of
these methods. In such a situation we can see that f(Y O

i |Xi) = f(Yi|Xi) = f(Y M
i |Xi),

permitting analysis to proceed. One way that we can view this is as a form of (single)
imputation, where the values for the Y M

i are imputed based on the model E[Y M
i |Y O

i , Xi].
This can often times be employed, alongside an Expectation-Maximization (EM) algorithm
to get likelihood-based parameter estimates in missing data situations.

When ML estimators are available, they are often preferable to multiple imputation, since
they are typically more efficient and less computationally demanding. However, multiple
imputation does have several benefits which are worth considering over a likelihood based
analysis.

1. Multiple imputation can leverage auxiliary information, which is not directly relevant
to the analysis, but which may help predict missing values.

2. Multiple imputation can be easily generalized to predict missing values for the covari-
ates in addition to the outcomes, which is not as easily accommodated by likelihood
techniques.

3. Multiple imputation allows you to use techniques which are not likelihood based (e.g.
GEE) under the assumption of MAR data.

4. Multiple imputation also allows a sensitivity analysis to be conducted, by simply alter-
ing the imputation models and seeing how much the parameter estimates change. This
provides an in-built way of determining how sensitive the estimates are to different
mechanisms, and removes uncertainty regarding incorrect models.

NMAR Data and Conclusions

The techniques presented allow us to overcome issues with data that are MCAR or MAR,
but not when the data are NMAR. In this case the only recourse that you have as an analyst
is to jointly model (Yi, Ri), which will depend on the specific situation. Still, in many
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situations MI or weighting will provide flexible ways to accommodate missingness, both in
the longitudinal setting and beyond.

Analyses which ignore missigness (without explicitly mentioning that they are performing
a complete case or available data analysis on the assumption of MCAR missingness) should
not be trusted. Analyses which use ad-hoc imputation techniques (such as last observation
carried forward) are also susceptible to incredible bias, and are acceptable in only very
limited contexts. At a minimum, models for missing data provide a way of making explicit
the assumptions that you are making, and allow you to test the sensitivity of your estimates
to these assumptions. Handling missing data in a way which is valid should be considered
essential for any analysis in the “real world”.
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