
STAT 437 - Lectures 013 and 014 Notes Generalized Estimating Equations (Theory)

Generalized Estimating Equations (GEE)

In order to estimate generalized linear marginal models (GLMM) we proposed the generalized
estimating equations (GEE) estimators. The idea is that a GLMM is specified by

1. A link function and conditional mean, g(µij) = X ′
ijβ.

2. A variance function such that var(Yij) = ϕV (µij).

3. A pairwise association function which gives cor(Yij, Yij) = Ri(ρ).

This allowed us to specify the complete mean and associations of a longitudinal model,
without the need for any distributional assumptions. We then said that β could be estimated
by solving a system of estimating equations given by

U(β) =
n∑

i=1

D′
iV

−1
i

(
Yi − g−1(Xiβ)

)
.

Here Di is a derivative matrix, Di =
∂
∂β
g−1(Xiβ) (dimension is going to be k × p), Vi is the

(working) covariance matrix Vi = A
1/2
i Ri(ρ)A

1/2
i (dimension is going to be k× k), and g−1()

is the inverse of the specified link function (dimension of the difference term is k × 1). β is
as such a p-dimensional vector of parameters, and is the core focus of our interest.

We have claimed that this is an M-estimator, and as such, results in consistent and
asymptotically normal estimates. We will show that these estimates are unbiased momen-
tarily, but to begin, let’s consider three commonly used GEE procedures for different types
of data to solidify the concepts!

Continuous Data with Identity Link

When presenting linear marginal models, we made the assumption that Yi ∼ MVN(Xiβ,Σi),
where we considered Σi = σ2R(ρ), predominantly, but also considered a more general matrix
for the variance. The downside to this specification for continuous data was that it relied
on the normality assumption, which is not desirable. We could specify the same type of
structure, estimated through a GEE, allowing for robustness to distributional assumptions.
If we take Yij to be a continuous variate, we can define

µij = X ′
ijβ and ϕV (µij) = ϕ.

Additionally, we can take Ri(ρ) to be our favourite correlation pattern matrix.
With this, we have that

µi = Xiβ =⇒ Di =
∂

∂β
µi = Xi.
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Then, our GEE becomes

U(β) =
n∑

i=1

D′
iV

−1
i (Yi − µi)

=
n∑

i=1

X ′
i[ϕRi(ρ)]

−1 (Yi −Xiβ)

=
1

ϕ

n∑
i=1

X ′
iRi(ρ)

−1 (Yi −Xiβ) .

Solving U(β̂) = 0 gives us the GEE estimators for β, which we can see solve the exact
same system of equations as with the LMM we have already seen! As a result,
just like with linear regression, the assumption of normality is not required!

Binary Longitudinal Data

If we have that Yij are binary variables, and we wish to model E[Yij|·] (or, equivalently, the
probability that Yij = 1) then the natural choice is to consider logistic regression. Recall

that generally for binary data we take the logistic link function, g(µ) = log
(

µ
1−µ

)
= x′β,

and the variance of binary data is µ(1− µ). Taking these as inspiration, we are tempted to
set

log

(
µij

1− µij

)
= X ′

ijβ =⇒ µij =
(
1 + exp

[
−X ′

ijβ
])−1

and ϕV (µij) = ϕµij(1− µij).

The function (1+exp(−x))−1 is referred to as the inverse-logistic, or expit function. For cor-
relation, while any pattern matrix would once again work, it often will make sense to specify
an unstructured relationship R(ρ) = [ρjℓ]∀j ̸=ℓ. With this specification, we can consider

Di =
∂

∂β

expit(X ′
i1β)

...
expit(X ′

ikβ)



=


Xi11

exp(−X′
i1β)

(1+exp(−X′
i1β))

2 Xi12
exp(−X′

i1β)

(1+exp(−X′
i1β))

2 · · · Xi1p
exp(−X′

i1β)

(1+exp(−X′
i1β))

2

...
...

. . .
...

Xik1
exp(−X′

ikβ)

(1+exp(−X′
ikβ))

2 Xik2
exp(−X′

ikβ)

(1+exp(−X′
ikβ))

2 · · · Xikp
exp(−X′

ikβ)

(1+exp(−X′
ikβ))

2


=

Xi11µi1(1− µi1) Xi12µi1(1− µi1) · · · Xi1pµi1(1− µi1)
...

...
. . .

...
Xik1µik(1− µik) Xik2µik(1− µik) · · · Xikpµik(1− µik)


=

µi1(1− µi1)X
′
i1

...
µik(1− µik)X

′
ik
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Here we have used the fact that µij = expit(X ′
ijβ) and that

exp(−x)

(1 + exp(−x))2
=

1

(1 + exp(−x))
· 1

exp(x)(1 + exp(−x))

= expit(x)
1

exp(x) + 1

= expit(x)(1− expit(x)).

If we define

Ai =


µi1(1− µi1) 0 · · · 0

0 µi2(1− µi2) · · · 0
...

...
. . . · · · ...

0 0 · · · µik(1− µik)

 ,

then Di = AiXi. Moreover, Ai represents the variance terms and so our working covariance
structure is given by

Vi = A
1/2
i RiA

1/2
i .

We can then combine all of these terms and get that the GEE for β is given by the solution
to

U(β) =
n∑

i=1

D′
iV

−1
i (Yi − µi)

=
n∑

i=1

X ′
iA

′
i

(
A

1/2
i RiA

1/2
i

)−1

(Yi − expit(X ′
ijβ)) = 0.

Count Longitudinal Data

When we have (univariate) count data we commonly will use a Poisson regression, which
has a log-link function and where var(Y ) = E[Y ] = λ. In the longitudinal case, we can keep
this inspiration, and specify our model as

log(µij) = X ′
ijβ =⇒ µij = exp(X ′

ijβ) and ϕV (µij) = ϕµij.

Again, while in theory any correlation pattern is fine, it is often advisable to start with an
unstructured pattern, Ri(ρ) = [ρjℓ]∀j ̸=ℓ. Here we can compute

Di =
∂

∂β

exp(X ′
i1β)

...
exp(X ′

ikβ)

 =

exp(X ′
i1β)X

′
i1

...
exp(X ′

ikβ)X
′
ik

 .

Defining
Ai = exp(Xiβ) = µi,
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we get that

U(β) =
n∑

i=1

D′
iV

−1
i (Yi − µi)

=
n∑

i=1

X ′
iA

′
i(A

1/2
i RiA

1/2
i )−1(Yi − exp(Xiβ)).

Then, solving U(β̂) = 0 produces our GEE estimator for β.
If you recall, in a log-linear model for count data (in the standard GLM case) we often

wish to scale our mean by the exposure time through the use of an offset. That is, instead
of specifying that E[Y ] = µ, we would specify that E[Y ] = µt, where t is the exposure time.
That way we can accommodate data which have differing observation periods. The same
principle is going to be used for longitudinal data, generally speaking, where we will actually
want log(µij) = X ′

ijβ + log(∆tij), where ∆tij is the length of the observed interval (for
individual i and time j). If we have intervals which are evenly spaced then ∆tij is constant
across all j, and including this offset is not necessary (giving us the derived estimators
above). However, in the (common) situation where the length of observations differ, then we
will want to ensure that this offset is included to properly calibrate our estimates! This will
not materially change the analysis as described, but it does mean that µi = exp(Xiβ)∆ti.

Nuisance Parameters and Estimation Procedure

Once we have estimated β, we can define the corresponding residuals of our estimates as
Yij − µ̂ij. Just as is common with regression analysis, it is typically useful to scale these
residuals by the standard deviation of our estimates, which give us the Pearson residuals,

r̂ij =
Yij − µ̂ij√
V (µ̂ij)

.

We can use these residuals to estimate the values of the nuisance parameters, ρ and ϕ.
While it is occasionally the case that we have direct interest in ρ or ϕ, this will seldom be of
scientific interest where our focus will tend to instead be on the mean pattern. Still, if we
need, we can use

ϕ̂ =
1

n− p

n∑
i=1

ki∑
j=1

r̂2ij

ρ̂jk =
1

ϕ̂(n− p)

n∑
i=1

r̂ij r̂ik.

These estimators will not generally be of much interest to us in this course.
Except in special cases the GEE estimators will need to be solved numerically and it-

eratively, since β̂ will depend on ρ and ϕ, and vice-versa. The general process will then
be:
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1. Initial a starting value for β̂.

2. Use β̂ to compute (ϕ̂, ρ̂).

3. Update β̂ based on these estimated values, and U(β).

Then steps (2) and (3) are repeated until our estimates converge.

Unbiasedness of Estimating Equations

In order to apply the theory of M-estimators, we need to be able to conclude that (at the
true value of β), E[U(β)] = 0. In order to do this, suppose that we know that E[Yi|Xi] =
g−1(Xiβ), exactly as specified. Then

E [U(β)] = E

[
n∑

i=1

D′
iV

−1
i (Yi − g−1(Xiβ))

]

=
n∑

i=1

E
[
D′

iV
−1
i (Yi − g−1(Xiβ))

]
=

n∑
i=1

E
[
D′

iV
−1
i (E[Yi − g−1(Xiβ)|Xi])

]
=

n∑
i=1

E
[
D′

iV
−1
i (E[Yi|Xi]− g−1(Xiβ))

]
= 0.

Here we have used the fact thatDi and Vi are both non-random conditional onXi, and E[·] =
E[E[·|Xi]]. In particular, this means that the only component which needs to be correctly
specified is the mean model! The values for Vi and Di do not impact the unbiasedness of
U(β).

We can then apply our standard M-estimator theory which gives asymptotic variance of
the estimator as J−1ΓJ−1′ , where

J =
n∑

i=1

D′
iV

−1
i Di and Γ =

n∑
i=1

D′
iV

−1
i var(Yi)V

−1
i Di.

Model-Based versus Sandwich Variance

The theory of M-estimation gives us the sandwich variance estimator being valid, no matter
Di or Vi, which permits us robustness against the misspecification of our working covariance
matrix. However, if Vi is correctly specified, such that var(Yi) = Vi, then note that Γ =∑n

i=1D
′
iV

−1
i Di, and so the variance of our estimators becomes J−1.

Because of this simplification, we refer to J−1 as the model based variance estimator.
It is only valid when our work covariance matrix is correctly specified, which we will not
typically assume, but this estimator does show-up in the literature and is valid whenever our
model is correct.

Page 5 out of 6



STAT 437 - Lectures 013 and 014 Notes Generalized Estimating Equations (Theory)

Additional Considerations and Conclusions

The estimation of GLMM through GEEs provides a flexible and robust mechanism for esti-
mating longitudinal models for any type of outcome data. There are a few considerations to
keep in mind with this process.

1. Parameters in a GLMM are interpreted as population averages. There are no individual
effects measured, and instead, βj refers to the expected change over the population.

2. The linear structure of the marginal model implicitly assumes that Yij ⊥ Xik|Xij for all
j ̸= k. This will not generally be the case if Xijℓ is a variable that varies randomly over
time, and as a result GLMMs can only accommodate time-invariant variates
or deterministic covariates.

3. The asymptotic normality of our estimators is a large-sample property. It provides
us with the capacity for Wald-type statistics, but relies on large n and the behaviour
of these estimates in small samples may be less predictable (particularly when Vi is
incorrectly specified).

4. GEE is not a likelihood based procedure. As a result you cannot use likelihood
ratio testing on models fit using GEE. This also means that we cannot use AIC or
BIC directly either. Instead, a modified version of QIC (quasi information criteria) can
be defined and used in place.

5. We can also use a generalized Score statistic, which is useful for testingH0 : Cβ = 0
for some constant C, where

U(β̃G)
′GmC

′[CGrC
′]−1CGmU(β̃G)

H0∼ χ2
r,

where β̃G is the GEE estimator under the null, Gm = Ĵ−1 and Gr = Ĵ−1Γ̂Ĵ−1. Here,
r is the rank of C. As a general rule, this is not implemented in statistical software,
so practitioners tend to use the Wald statistic instead.
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