
STAT 437 - Lecture 011 Notes M-Estimation: A Practicing Statistician’s Best Friend

M-Estimation (or Unbiased Estimating Equations)

If we think back to introductory statistics classes, there are several general principles that
we often end up following in order to derive (point) estimators for quantities of interest. The
most prevalent is maximum likelihood estimation, where we wish to optimize the likelihood of
an observed sample. In order to do this, we derive L(θ) based on a distributional assumption,
we take the logarithm to make it easier to work with (ℓ(θ)), then differentiate giving S(θ).

We then solve S(θ̂) = 0. If we had assumed our density was f(y; θ), then we can make these
quantities specific, notably

L(θ) =
n∏

i=1

f(yi; θ)

ℓ(θ) =
n∑

i=1

log f(yi; θ)

S(θ) =
n∑

i=1

∂

∂θ
log f(yi; θ).

We know that E[S(θ)] = 0. Moreover, we know that, asymptotically, the θ̂ which solves

S(θ̂) = 0 is such that (as n → ∞),

θ̂∼̇N
(
θ, I(θ)−1

)
,

where I(θ) = E[−S ′(θ)] is the Fisher Information matrix.
In certain settings, in place of this likelihood derivation, we would have also seen least

squares estimators (this is particularly relevant, for instance, in regression!). The idea here

is that, if θ̂ is going to be a “good” estimator for θ, then it presumably should be near
θ, generally. If we use L(θ̂) to represent a loss function, which measures the distance
between our estimate and the true value, then estimators which have lower expected loss
are preferable. Frequently, we would take L(θ̂) = (θ − θ̂)2, which we call the squared loss

function, or squared error. If we find the estimator θ̂ such that E[L(θ̂)] is minimized,
then we call this estimator the least squares estimator (since it minimizes the squared
error function!). Now, in practice we are often going to want to minimize these values in a
particular sample! For instance, if we consider β in the linear regression context, then we
are suggesting that E[Yi|Xi] = X ′

iβ, and the least squares estimator is going to minimize the
MSE empirically. That is

L(β) = 1

n

n∑
i=1

(Yi −X ′
iβ)

2

L′(β) =
1

n

n∑
i=1

∂

∂β
(Yi −X ′

iβ)
2,

and then our estimators solves L′(β̂) = 0.
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Generally, if θ̂ is a least squares estimator, then we would find that it is consistent for θ
(that is, it converges in probability) and also, as n → ∞

θ̂∼̇N(θ, var(θ̂)).

In the event of linear regression we find that the likelihood estimator for β (assuming
normality) and the least squares estimator (where no distribution is assumed) are exactly
the same. This is a curious result: one process made a strict distributional assumption, and
using properties of that distribution gets to the estimator and related properties; the other
makes no such assumptions, but gets to the same point. Upon further investigation, there
is a core similarity between these two processes: they are both optimization procedures.

For likelihood theory we want to maximize L(θ) and for least squares estimation we want
to minimize L(θ), which is equivalent to the maximization of −L(θ). In both cases, these
functions take the form

∑n
i=1 ρi(Yi, θ) for a particular ρi, so that when we use our standard

calculus results to optimize them, our estimator θ̂ ends up solving

n∑
i=1

∂

∂θ
ρi(Yi, θ) = 0.

It turns out that estimators of this form come up incredibly often and are incredibly useful!

Definition: An estimator, θ̂ is said to be an M-estimator, if θ̂ is the solution to U(θ̂) = 0,
for some U(θ) which takes the form

U(θ) =
n∑

i=1

Ψ(θ;Yi).

We call U(θ) an estimating function, and the equations specified by U(θ) = 0 are said to

be estimating equations. We call θ̂ an M-estimator where the M stands for maximum.
Both likelihood estimators and least squares estimators are specific kinds of M-estimators.

Key Theoretical Results

That was a lot of words to say that an M-estimator is an estimator which solves U(θ) = 0,
where U(θ) is just a summation over an IID sample. Why do we care at all? Suppose that
θ0 is a value for θ such that E[U(θ0)] = 0. Then, for free1 we get that

1. θ̂ is a consistent estimator for θ0.

2. θ̂ has an asymptotic distribution (as n → ∞) given by

θ̂∼̇N(θ0,A(θ0)
−1B(θ0)A(θ0)

−1′),

where A(θ0) = E
[
− ∂

∂θ
U(θ)

]
evaluated at θ = θ0 and B(θ0) = E[U(θ0)U(θ0)

′].

1In actual fact, we require a few more “regularity” assumptions on U(θ). These are going to hold for most
situations that come up in your STAT courses, and are more a technical requirement than an informative
point, so you can feel free to ignore them!
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Note that we have not made any assumption about where U(θ) is coming from. We have
not made any assumption about the distributions we are working with. We have not made
any assumption except for the fact that, when we take the expected value of our function,
U(θ) at θ = θ0, we get 0! When we have such a U(·), not only do we have a consistent
estimator for θ0, but we have one which is asymptotically normal, meaning that we can
proceed with all of the standard inference tools that we are used to! What’s more the
asymptotic distribution of our estimator only relies on the form of U(θ) that we have.

We refer to the variance matrix as a sandwich variance estimator since (if you’re
really hungry) you could view A(θ0)

−1 as two slices of bread, and B(θ0) as the contents
of the sandwich2. Now, the nice part of these two matrices is that (often) we are able to
reliably estimate them from the data at hand. The reason is that, since they are both simple
expectations, we can take

Â(θ0) = − 1

n

n∑
i=1

∂

∂θ
U(θ, Yi)

∣∣∣∣
θ=θ̂

B̂(θ0) =
1

n

n∑
i=1

U(θ̂, Yi)U(θ̂, Yi)
′.

This provides us with valid asymptotic inference (so long as n is sufficiently large!).

The Score Equation as an M-Estimator

To re-emphasize these ideas, let’s consider an example that we know well: the Score function!
We saw above that

S(θ) =
n∑

i=1

∂

∂θ
log f(yi; θ) =

n∑
i=1

f ′(yi; θ)

f(yi; θ)
.

Now, we also know (and have used in our discussion of GLMs) the fact that, if θ = θ0, then
E[S(θ0)] = 0, and so we know that the Score function is unbiased! As a result, the estimator

θ̂ which solves S(θ̂) = 0 will be such that

1. θ̂ is consistent for the true value θ0.

2. θ̂ is asymptotically normal. The relevant matrices are

A(θ0) = E

[
− ∂

∂θ
S(θ)

∣∣∣∣
θ=θ0

]
= I(θ0)

B(θ0) = E [S(θ0)S(θ0)
′] = var(S(θ0)) = I(θ0).

Here, we used the property (which we also used during the GLM review) that the
variance of the Score function is the expected information. As a result, we have that
A(θ0) = B(θ0) and so the asymptotic variance is simply going to beA(θ0)

−1 = I(θ0)
−1′ ,

which is exactly the result stated above!

2No one ever said statisticians were good at naming things.
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More Examples

Of course, we already knew the properties of likelihood and least squares estimators and
so M-estimation is not the most useful for these situations. The use case is more that M-
estimation unifies these related estimation procedures, and brings along with it anything
that can be framed in these terms!

Sample Means

Consider the estimation of the mean of some distribution, Y , which we denote with θ0.
We know that we want some function Ψ(θ, Y ), such that E[Ψ(θ0, Y )] = 0. Consider what
happens if we simply take Ψ(θ, Y ) = Y − θ. Well clearly, for the true θ0 we would find

E[Ψ(θ0, Y )] = E[Y ]− θ0 = θ0 − θ0 = 0.

As a result, if we take

U(θ) =
n∑

i=1

Yi − θ,

then this defines an estimator for the mean of Yi which we know will be consistent and
asymptotically normal! In this case, we can actually solve this for θ̂ in closed form,

U(θ̂) = 0 ⇐⇒
n∑

i=1

Yi − θ̂ = 0

⇐⇒ nθ̂ =
n∑

i=1

Yi

⇐⇒ θ̂ =
1

n

n∑
i=1

Yi.

This is just the sample mean, Y ! Recall that we know from the WLLN and the CLT that X
is consistent for E[X] and that X∼̇N(θ0, n

−1 var(Y )). We could also have gotten that from
this M-estimation approach!

A(θ0) = E

[
− ∂

∂θ
U(θ)

∣∣∣∣
θ=θ0

]
= n

B(θ0) = E [U(θ0)U(θ0)
′]

= var

[
n∑

i=1

Yi − θ0

]

=
n∑

i=1

var(Yi − θ0)

= n var(Y )

=⇒ A(θ0)
−1B(θ0)A(θ0)

−1′ = n−1 var(Y ).
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Joint Mean and Variance

Consider if instead of an estimator for the mean, we want to joint estimate the mean and
the variance. Consider the estimating equation given by

U(θ) =
n∑

i=1

(
Yi − θ1

(Yi − θ1)
2 − θ2

)
.

Here we are taking θ = (θ1, θ2) to be a 2D vector of the parameters. Now, if Yi is such that
E[Yi] = µ and var(Yi) = σ2, then consider E[U(µ, σ2)].

E[U(µ, σ2)] =
n∑

i=1

E

{(
Yi − µ

(Yi − µ)2 − σ2

)}
=

(
E[Yi]− µ

E[(Yi − µ)2]− σ2

)
=

(
µ− µ

var(Y )− σ2

)
= 0.

You could of course still work out the A(θ0) and B(θ0), but I will leave that as an exercise
if you care: for now, we can say that because this is an unbiased estimating equation, the
resulting estimator will be consistent for (µ, σ2).

Quasi-Likelihood Estimators

When we were considering quasi-likelihood estimators for β, we defined them such that β̂
solves

U(β) =
n∑

i=1

∂µi

∂β

Yi − µi

ϕV (µi)
= 0.

We claimed that as long as µi was correctly specified then this process results in consistent
estimators for β (even when V (µi) is incorrect). We also claimed that the variance of our
estimator can be estimated consistently even when V (µi) is incorrect. The reason is (you
guessed it), QMLEs are M-estimators! We can see that E[U(β)] = 0 is true, so long as µi

is correctly specified, since the only random component is the Yi and E[Yi]− µi = 0. Using
the sandwich variance estimators give us a technique for estimating the variance of our
estimator, regardless of the true underlying distribution, which is what makes M-estimation
so powerful!

Conclusions

Through the remainder of the course we will see M-estimators come up several times.
Throughout your other statistics courses (and particularly, if you continue into graduate
school) you will (likely) see several other estimators which are M-estimators. Despite their
prevalence, it is not often that (at the undergraduate level) M-estimation is presented as
a general theory. I think that this does a disservice as it forces you to conceptualize sev-
eral different estimators (for instance, likelihood and least squares estimators) as distinct,
whereas they share the same underlying theory. There is also a special connection to the
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University of Waterloo (look up VP Godambe, if you’re interested!). Still, M-estimation is
quite theoretical, and even though I have done my best to simplify the results, this note
may still seem confusing and that’s okay. In order to be successful in this course, all you
need to know is that M-estimators are a special type of estimator, which, based on some
underlying theory (which we did not cover) have very desirable properties!
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